首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Erosion and transport of juvenile individuals may alter the distribution pattern of intertidal bivalves. The burrowing success of recently transported juvenile softshell clams (Mya arenaria) was studied in a laboratory flume under a wide range of hydrosedimentary environments. Juvenile individuals (5-20 mm) were observed under a simulated 30 min slack tide before initiating the flow for a period of 60 min. Five different free-stream velocities (0, 3, 5, 10 and 24 cm s− 1) and four sediment types (mud, sandy-mud, sand and gravel) were used. The mean proportion of juvenile clams that initiated (MPI) or completed (MPC) a burial decreased with increasing shell length. Erosion from the sediment was more important in large juveniles suggesting that large juveniles may have more difficulty successfully relocating once transported. The MPI increased with increasing flow speed in experimental runs held at speed < 24 cm s− 1. This was observed in all sediment types. Most individuals were unable to burrow at 24 cm s− 1 because they got eroded. The MPC also increased with increasing flow speed in mud, sandy-mud and sand. The MPC's response to flow was more complex in gravel because of a shell length × flow speed interaction effect. Our observations suggest that water movement may induce the burrowing behaviour of recently eroded juvenile clams. Results are discussed in an ecological and aquacultural context.  相似文献   

2.
The marked variability in the natural recruitment of Argopecten purpuratus, a common characteristic for many marine invertebrates with a pelagic larval stages, with important consequences for community functioning, is a problem for the fishery on this species. We ran experiments in the subtidal zone in Tongoy Bay, Chile, to test whether providing a filamentous settlement substratum in the water column and shell litter on the bottom would increase the settlement and post-larval survival of scallops. We placed collectors made of Netlon® 50 cm above the sand and mud bottoms, and three and a half months later there were significantly more scallop spat on the bottom under the collectors (38.5 ind m− 2), than in areas without collectors (0 ind m− 2), or in controls where collectors were installed but a bag around the collector prevented the juveniles from falling to the bottom (4.8 ind m− 2). Also, the addition of either entire or broken scallop shells to the bottom resulted in increased settlement of juveniles on the bottom (33.7 ind m− 2 with entire shells and 48.1 ind m− 2 with broken shells), compared to plots where no shell debris was added (0 ind m− 2). The 2 week survival rate of juveniles (< 3 mm shell height) added to plots covered with entire scallop shells (12.4%) and to plots covered with broken shells (15.1%) was greater than in plots where we did not add shells (3.5%). These results suggest that substrate availability explains spatial variability of recruitment for this species, while temporal variability (between years) is mainly the consequence of larval supply. The manipulation of substrates can locally increase settlement, but will not remove the temporal variability. Whereas our experiments provide useful insights into strategies for managing or establishing local scallop populations, experiments over a longer term and at a large scale are needed to further understand the community functioning in order to develop a strategy for managing this fishery resource.  相似文献   

3.
Young juveniles of many motile benthic species are concentrated in structurally complex habitats, but the proximate causes of this distribution are usually not clear. In the present study, I assessed three potentially important processes affecting distribution and abundance of early benthic stages in the shore crab (Carcinus maenas): (1) selection of habitat by megalopae (postlarvae); (2) habitat-specific predation; and (3) post-settlement movements by juveniles. These processes were assessed concurrently over 3-9 days at two spatial scales: at the scale of square meters using cage techniques within nursery areas, and at the scale of hectares using isolated populations of juvenile shore crabs in small nursery areas as mesocosms. The results were compared to habitat-specific distribution in the field.Shore crab megalopae and first instar juveniles (settlers) were distributed non-randomly among micro-habitats in the assessed nursery areas, with great densities in both mussel beds, eelgrass and filamentous algal patches (on average 114-232 settlers m−2), and significantly smaller densities on open sand habitats at all times (on average 4 settlers m−2). The same habitat-specific settlement pattern was found in cages where predators were excluded, suggesting that active habitat selection at settlement was responsible for the initial distribution. Older juveniles (second to ninth instar crabs) were also sparse on sand, but in contrast to settlers, were concentrated in mussel beds, which showed significantly greater densities than eelgrass and algal habitats. The cage experiment demonstrated a dynamic distribution of juvenile crabs. Young juveniles constantly migrated over open sand habitats (20 m or further) and colonized the experimental plots in a habitat-specific pattern that reflected the distribution in the field. This pattern was also found for very small crabs colonizing predator-exclusion cages, suggesting that selection of habitat by migrating juveniles caused the ontogenetic change in habitat use. Although post-settlement movements were great within nursery areas, juvenile dispersal at a regional scale appeared to be small, and the recruitment of juvenile shore crabs to the shallow bays occurred mainly through pelagic megalopae.Conservative estimates at the scale of whole nursery areas, based on migration trap data and field samples, indicated great mortality of settlers and early benthic stages of shore crabs. Results from the cage experiment suggest that predation by crabs and shrimp were responsible for the high settlement mortality. Both enclosed cannibalistic juvenile crabs and local predators on uncaged habitat plots caused significant losses of settlers in all habitats (on average 22% and 64% 3 day−1, respectively). The effect of predators was highly variable between trials, but differed little between habitat types, and predation had no detectable proximate effect on juvenile distribution, despite the great losses. Small settlement densities on sand habitats in combination with a refuge at low prey numbers, and an aggregation of cannibalistic juvenile crabs in nursery habitats appear to decrease the effect of habitat-specific predation rates on the distribution of juvenile shore crabs. This study demonstrates that active habitat selection at settlement followed by a dynamic redistribution of young juveniles can be the proximate processes responsible for habitat-specific distribution of epibenthic juveniles, and indicate that predation represents a major evolutionary process reinforcing this behavior.  相似文献   

4.
The mean column velocity preference of juvenile Atlantic salmon Salmo salar (LF 30–55 mm) was investigated by observing their spatial pattern of habitat use in a laboratory flume while varying discharge (Q) over a 18‐fold range (Q=2·6–46·8l s‐1). Based on 341 fish observations at three discharges (Q=2·6, 15·0 and 46·8l s‐1), three separate velocity preference curves were developed using standard procedures. The mean column velocities measured at 0·6 depth for the fish positions at the set low, medium and high discharges had medians of 7, 10 and 24 cm s‐1, respectively, and varied significantly between the discharges. Across the range of flows, the fish utilized mean column velocities between 0 and 56 cm s‐1, but the three velocity preference curves differed. Differences between juvenile Atlantic salmon use of habitat, defined according to mean column velocities at different discharges, were greatest at the lower end of the available range of velocities (<20 cm s‐1). Weighted usable area (WUA), the output of the instream flow model PHABSIM that is used to describe the available habitat at a given discharge, was calculated for the flume using the preference curves built at the three set discharges. The model was highly sensitive to differences between the three preference curves and WUA varied by up to a two‐fold difference. Furthermore, habitat‐discharge relationships derived from the three preference curves were very different. Predicted habitat losses across the modelled range of discharges varied by up to 150% depending upon which velocity preference curve was used in the model. Thus, the assumption that a single preference curve can be applied across a range of discharges is not valid and is likely to result in large errors when employing PHABSIM and other models that use similar principles.  相似文献   

5.
Hatchery-reared juvenile Mya arenaria L. were grown for 11 wk in replicated gravel, sand, mud, and pearl net treatments under flow-through sea-water conditions in Maine. Analyses of variance showed significant differences between sediment treatments for final shell length, dry meat weight, chondrophore growth increment, and percent shell weight. Growth of juvenile M. arenaria was more rapid in fine sediments than in coarse sediments or nets.Regression slopes of shell length-shell height and shell length-shell depth varied significantly between sediment treatments. Slower-growing clams from nets and gravel were more globose than clams from sand or mud treatments. Clams grown in sand were longer and narrower than those from mud. Differences in growth rates and shell form were attributed primarily to the physical properties of the substrata, and their effects on the scope for growth of M. arenaria.  相似文献   

6.
Habitat selection is an important phenomenon that may greatly affect individual fitness. Using an artificial stream, we examined the relationship between the percentage of prey captured, reactive distance, dominance, and water velocity for juvenile Chinook Salmon (Oncorhynchus tshawytscha) from the Chena River, Alaska, and tested the fitness-based microhabitat selection model of Grossman et al. (Ecol Freshw Fish 11:2–10, 2002). Recent declines in the abundance of Chinook accentuate our need for habitat selection studies on this species. We conducted three experiments: two with single fish (1st N?=?27, fish SL 58–84 mm, 2nd N?=?14, fish SL 49–56 mm) and one with pairs of dominant and subordinate fish (N?=?10 pairs, 64–96 mm, mean difference in SL?=?7 mm). We placed individual or pairs of fish in an artificial flume and recorded reactive distance and the percent prey capture with individual dead brine shrimp (Artemia spp.) as prey. Prey were presented at 10 cm/s velocity intervals ranging from 10 to 60 cm/s; velocities found in the natural habitat. Mean reactive distance in single fish experiments (henceforth SFE) averaged 33 and 29 cm respectively, and was not related to velocity. We detected a negative, curvilinear relationship between velocity and percent prey capture. Holding velocities for juvenile Chinook were significantly lower than prey capture velocities. The Grossman et al. (Ecol Freshw Fish 11:2–10, 2002) model yielded an optimal focal-point velocity prediction of 35 cm/s for juvenile Chinook, however focal-point velocities occupied by juveniles in the Chena River averaged 12 cm/s. Predicted optimal velocities were present in the Chena River; hence, this discrepancy suggests that other factors such as distraction from drifting debris or predation risk influenced habitat selection. There were no differences in reactive distances or holding velocity/capture velocity relationships for dominant and subordinate fish; however, dominants captured significantly more prey than subordinates. Being subordinate resulted in a decrease of 61% in mean percent prey capture (the difference between what was captured by the fish alone versus the difference with a dominant), whereas the mean cost to fish with dominant rank was a 21% decline between the percentage captured alone versus that with a subordinate.  相似文献   

7.
The feeding rate and behaviour of whelks (Buccinum undatum)offered cockles (Cerastoderma edule) in laboratory experimentswere examined. When presented with cockles in a range of sizes(10–40 mm), 14 B. undatum (34.6–88.3 mm),held individually in aquaria, consumed a wide size range ofcockles. Small whelks (<40 mm) consumed cockles (<23 mm),whereas large whelks, (>60 mm) ate a greater numberof larger cockles (>30 mm) and a wider size range ofcockles (12–40 mm) than smaller whelks. The majority(90%) of the shells of the predated cockles were undamaged andthe few (<10%) that were damaged showed only slight abrasionsto the anterior and posterior shell margin. Filmed observationsof B. undatum feeding on C. edule showed a method of attackthat has not previously been reported and involved the use ofthe whelk's foot to asphyxiate the cockle or to pull the shellvalves apart. No filmed evidence was found for the previouslyreported shell ‘wedging’ technique for prising openthe closed shell valves of C. edule, although 10% of the shellsof consumed cockles in feeding experiments had damaged shellmargins. (Received 4 April 2007; accepted 30 June 2007)  相似文献   

8.
The hydroid Ectopleura larynx is a common fouling organism on aquaculture nets. To contribute to the development of novel cleaning methods, laboratory and field studies determined the effects of heat (30, 40, 50 and 60°C for immersion times of 1 and 3 s) and acetic acid (0.2 and 2.0% for immersion times of 1, 3 and 10 s, 1 and 5 min) on the settlement of actinulae and the survival of juvenile and adult E. larynx. Laboratory studies showed that, regardless of immersion time, a temperature of 50°C was effective in preventing the settlement of actinulae and the survival of juveniles, while ≤12% of adult hydroids could survive. A temperature of 60°C killed all adult hydroids. For an acetic acid concentration of 0.2%, an immersion time of 1 min substantially reduced the settlement of actinulae and the survival of juvenile and adult hydroids, and none of the juvenile and adult hydroids survived after 5 min. For an acetic acid concentration of 2.0%, all immersion times were effective and reduced the mean settlement of actinulae and the survival of juvenile and adult hydroids to ≤10%. Field studies with fouled net panels exposed to selected heat or acetic acid treatments showed small reductions in mean wet weight and net aperture occlusion of the net panels 2 and 5 days after treatment. Visual inspections of the net panels showed that hydranths of the hydroids were shed, but the dead stolons of the hydroids remained on the treated net panels. Novel cleaning methods and devices may utilise these results to effectively kill E. larynx on aquaculture nets, while further studies are needed to determine the necessity of removing the dead hydroids before further biofouling accumulates on thenets.  相似文献   

9.
ABSTRACT

The South American charru mussel, Mytella strigata, was recently recorded in Singapore waters, possibly introduced into Southeast Asia through shipping. The mussels have rapidly spread across estuarine coastal mudflats. Adult mussels were collected, spawned in aquaria and larvae were successfully cultured to the juvenile stage in the laboratory. The larval morphology and development of M. strigata is described in this paper. D-shaped veligers were produced within 20 h of fertilization and were approximately 75 µm in shell length. These larvae were capable of settlement two weeks post fertilization. Given an adequate amount of food, they were able to grow up to 1 mm in shell length within 30 days. The larval shell of M. strigata possesses anterodorsal G2 hinge teeth as distinct wavy ledges, with a pitted resilial ridge clearly evident in the juvenile shell.  相似文献   

10.
Summary Field experiments were undertaken on the intertidal gastropod Bembicium auratum, which is one of the dominant organisms in sheltered bays and mangroves in New South Wales. Animals were caged at various densities ranging from natural levels to about four times normal density. Increased density resulted in increased mortality (particularly of juveniles), reduced body weight, and (less conclusively) a decline in growth rate. Chlorophyll levels of the mangrove mud within the cages were monitored as an index of food availability, and increased rapidly in the control cages in the absence of Bembicium, remained steady at normal Bembicium densities, and declined at higher densities. Parallel experiments were conducted on the effects of substratum on Bembicium. One series of animals was allowed access to a hard substratum and the other only to mud. Body weights and survivorship were proportionally lower in animals deprived of a hard substratum. Juveniles were particularly susceptible to a shortage of food and more dependent on a hard substratum than adults. The population structure also suggests a high juvenile mortality but high adult survival and longevity. Bembicium is very abundant low on the shore but numbers decline and body weights increase higher up. Chlorophyll levels and amounts of hard substratum also decline up the shore. Possibly juveniles settle selectively (or survive better) low on the shore where oysters provide a dense hard substratum. Adults are less dependent on the hard substratum and may disperse up the shore, explaining the patterns of abundance and size.As Bembicium limits its own food supply and seemingly is limited by it, predation is unlikely to play an important role in restricting population density.  相似文献   

11.
Synopsis The distribution patterns, diets, and substratum (refuge) requirements of early juveniles of two sympatric stichaeid fishesCebidichthys violaceus andXiphister mucosus, were investigated in a rocky intertidal habitat at Diablo Canyon, California. Monthly investigations were conducted at low tide for four consecutive months, to assess ontogenetic differences in distribution, diet, and refuge requirements within and between the two species. Distinct differences in vertical zonation were exhibited by both stichaeids throughout the study. Interspecific zonation patterns were similar to those recorded for adults of both species. Diet analyses showed that early juveniles of both stichaeids were zooplanktivorous, differing markedly from the primarily herbivorous diets of adults. Changes in diet were largely due to the selection of larger prey taxa as both fishes, and their mouth size, grew over the study period. Predation by both fishes on water-column planktors (calanoid copepods, zoea and polychaete larvae) was greatest following initial intertidal settlement and habitat establishment by early juvenile fishes. Greater dependence on substrate-oriented and/or benthic prey (harpacticoid copepods, gammarid amphipods and mysid shrimp) was exhibited by both fishes as they grew in size. Affinities for sand, gravel, and pebbles during monthly field surveys were similar for both species throughout the study. As the fishes grew, their substratum preferences changed in relation to the substrata which provided the best refuge. Results from laboratory experiments indicated that young stichaeids select very specific substrata based on fish age (size) and substratum suitability (i.e. adequate refuge). Similarities in diet and substratum preferences, and changes in those preferences over time, appear to be the result of morphological similarities (body size and shape and mouth gape) for both species at a given age.  相似文献   

12.
Circadian rhythmicity in the behaviour of the marine prawn, Metapenaeus monoceros (Fab) and its substratum preference has been observed under laboratory conditions. In the morning at 9. a.m. 80% prawns remain buried and in the afternoon at 3 p.m. 60% burrowing was observed. A contrasting situation was observed in the night i.e. 17% burrowing at 9 p.m. and 30% burrowing at 3 a.m. was registered. In the second set of experiments juveniles were subjected to four types of substrata viz. mud, black fine sand, white coarse sand and stones. It was noted that M. monoceros showed more affinity towards the mud and less preference to other substrata. The obtained results are discussed to provide clues for prawn fishing.This work was supported by I.C.A.R., New Delhi through a project on Reprod. Endocr. Edible prawns.  相似文献   

13.
The erosion and transport of juvenile softshell clams (Mya arenaria) was studied in a laboratory flume in relation to free-stream velocity (0, 7, 16, 29 and 35 cm s− 1), shell length (0-5, 5-10, 10-15, 15-20 mm) and type of sediment (mud, sandy-mud, sand and gravel). Our results showed that these factors interact together on the erosion of clams from the sediment. Juveniles were eroded in great numbers in sand while mud retained them more easily. Bedload transport was initiated at speeds of 16 cm s− 1. Most of the clams were eroded in sandy sediments at speeds of 29 and 35 cm s− 1. The smallest individuals were highly vulnerable to erosion compared to the other size classes studied. A results-based model using the logistic regression statistics was proposed. This allowed the estimation of erosion probabilities for a given hydrosedimentary environment. A field validation of the model was then carried out. Field results confirmed the importance of free-stream velocity, shell length and type of sediment on the erosion rate of clams. The differences observed between predicted and field results suggest that the model underestimated the erosion rate in the field. Results are discussed in the context of hydrosedimentary environments found off the eastern coast of Canada.  相似文献   

14.
To date, the natural substratum preferences of early benthic phase (EBP) European lobsters (Homarus gammarus) remain largely unknown. This study utilised a large scale mesocosm experiment to determine if the animal favours cobble ground, similar to its American counterpart (Homarus americanus), or has other substratum preferences. Postlarvae were provided with the choice of settling on four natural substrata: sand, coralline algae, mussel shell and cobble. Over a nine month period, the number and size of juveniles on each substratum was recorded, with loss of chelipeds used as an indication of social interaction. After a 30 day period, a non-random distribution of lobsters was observed on the four substrata. Juveniles were more abundant in substrata which provided pre-existing shelter in the form of interstitial spaces, i.e. cobble and mussel shell, than in sand or coralline algae. The survival of individuals from postlarvae to 30 day old juveniles ranged from 5 to 14% with surviving benthic recruits showing a clear mode at 6-8 mm carapace length (CL) in size distribution. The density of lobsters per m(2) of cobble remained relatively constant (18/m(2)) throughout the study period while the density of juveniles on mussel shell decreased significantly (35 to 5/m(2)). The size distribution of lobsters on each substratum also varied with time. By the conclusion of the trial, lobsters found in mussel shell had a mode of 8-10 mm CL within a range of 6-14 mm CL while those in cobble had a mode of 10-12 mm CL within a range of 8-24 mm CL. Overall, the results underline the importance of shelter-providing habitat such as cobble or crevice-type substrata to EBP European lobsters. They also confirm that for a shelter-dwelling animal such as a lobster, the physical structure of the habitat is a key factor in determining both the size and number of its inhabitants.  相似文献   

15.
Processes that affect recovery of coral assemblages require investigation because coral reefs are experiencing a diverse array of more frequent disturbances. Potential bottlenecks to coral recovery include limited larval supply, low rates of settlement, and high mortality of new recruits or juvenile corals. We investigated spatial variation in local abundance of scleractinian corals in the Seychelles at three distinct life history stages (recruits, juveniles, and adults) on reefs with differing benthic conditions. Following widespread coral loss due to the 1998 bleaching event, some reefs are recovering (i.e., relatively high scleractinian coral cover: ‘coral-dominated’), some reefs have low cover of living macrobenthos and unconsolidated rubble substrates (‘rubble-dominated’), and some reefs have high cover of macroalgae (‘macroalgal-dominated’). Rates of coral recruitment to artificial settlement tiles were similar across all reef conditions, suggesting that larval supply does not explain differential coral recovery across the three reef types. However, acroporid recruits were absent on macroalgal-dominated reefs (0.0 ± 0.0 recruits tile?1) in comparison to coral-dominated reefs (5.2 ± 1.6 recruits tile?1). Juvenile coral colony density was significantly lower on macroalgal-dominated reefs (2.4 ± 1.1 colonies m?2), compared to coral-dominated reefs (16.8 ± 2.4 m?2) and rubble-dominated reefs (33.1 ± 7.3 m?2), suggesting that macroalgal-dominated reefs have either a bottleneck to successful settlement on the natural substrates or a high post-settlement mortality bottleneck. Rubble-dominated reefs had very low cover of adult corals (10.0 ± 1.7 %) compared to coral-dominated reefs (33.4 ± 3.6 %) despite no statistical difference in their juvenile coral densities. A bottleneck caused by low juvenile colony survivorship on unconsolidated rubble-dominated reefs is possible, or alternatively, recruitment to rubble-dominated reefs has only recently begun. This study identified bottlenecks to recovery of coral assemblages that varied depending on post-disturbance habitat condition.  相似文献   

16.
There is considerable global interest in rebuilding depleted populations of sea cucumbers (Echinodermata, Holothuroidea) to address conservation and economic goals. For the vast majority of holothurian species, the habitat and food requirements of the juvenile stage are poorly understood. We investigated the distribution and microhabitat associations of juveniles of a commercially important sea cucumber, Stichopus cf. horrens, in the shallow, shoreward side of a coral reef (or backreef) in northern Philippines (16°21′38.7″N, 119°59′47.9″E). Relationships between juvenile density and the physical, chemical and biological characteristics of their habitat were examined. Potential food sources of the juveniles were also investigated using elemental and stable isotope analysis. Results showed that juveniles are more abundant in seagrass areas and the transition zone between seagrass and the rubble-dominated reef flat. A non-metric multidimensional scaling (MDS) plot indicated that juvenile density was most positively associated with coarser sand and rubble (>0.5 mm) and seagrass (Thalassia hemprichii) abundance (2D stress = 0.11). Juvenile density was also positively associated with sediment organic matter from plant detritus to a lesser extent. Elemental and isotope analysis of one site indicated that epiphytes were the primary food source of juveniles, while sediment detritus from microalgae and seagrass was a secondary food source. This study corroborates anecdotal evidence regarding the importance of seagrass to S. cf. horrens as potential refugia and source of high-quality food for its juveniles. These findings underscore the need to protect the nursery habitats of wild juveniles and provide critical information for the selection of suitable natural habitats for releasing cultured juveniles of this important species.  相似文献   

17.
The larval and juvenile stages of Sebastes taczanowskii (Japanese name: Ezo-mebaru) are described and illustrated based on 33 wild specimens [7.1–26.9 mm in body length (BL)] collected in the Sea of Japan, and eight specimens of reared larvae extruded from the one specimen of a captive pregnant female. Larvae were extruded between 4.3–5.0 mm BL and notochord flexion occurred 5.7–9.0 mm BL. Transformation from postflexion larvae to pelagic juveniles occurred between 13 and 17 mm BL. Preflexion and flexion larvae have a single melanophore row on the dorsal surface on the tail, and an internal line of melanistic dashes on the ventral side of the tail. Lateral pigmentation of postflexion and transforming larval body surfaces are light. Compared with other Japanese rockfish species, S. taczanowskii is shallow-bodied throughout both larval and juvenile stages. We provide an identification key to preflexion and flexion stage rockfish larvae found around the Japanese archipelago, and comparisons with other species. Larval and juvenile S. taczanowskii occurred in both near-shore and relatively offshore water around Shakotan Peninsula-Ishikari Bay, Hokkaido in June and July.  相似文献   

18.
The morphological development, including the pigmentation, body proportions, fins, and survival rate for 30 days after hatching, of laboratory-reared larval and juvenile Hypsibarbus malcolmi is described. Body lengths (BL) of larvae and juveniles were 2.0 ± 0.2 (mean ± SD) mm at 1 h after hatching (day 0) and 9.2 ± 0.6 mm on day 16, reaching 12.1 ± 0.9 mm on day 30. Yolk volume decreased linearly, with the yolk being completely absorbed by day 3 in all preflexion larvae (all specimens >3.2 mm BL). Feeding was observed on day 2 in fish which had rapidly undergone complete yolk absorption following mouth and anus opening on day 1, and on day 3 in all remaining fish. Myomere numbers were 20–21 + 11–12 = 31–33, although they were not clearly visible in juveniles. Melanophores were few on the body during days 0–2, but increased with growth and covered the entire upper dorsal body surface during the juvenile stage. Body proportions tended to become constant in juveniles. Notochord flexion began in larvae >5.2 mm BL on day 8, and was completed in larvae >8.4 mm BL on day 14. Specimens with full fin ray complements were initially observed on day 22 (10.4 mm BL in juveniles). All specimens >11.5 mm BL had attained the juvenile stage. A high survival rate of 92.7% was estimated on day 30.  相似文献   

19.
On a sandy beach at Shoal Bay in Princess Royal Harbour, Albany,southwestern Western Australia, lives a small muricid gastropodthat feeds virtually monotonically on the overwhelmingly dominantresident bivalve Katelysia scalarina. Lepsiella paivae livesburied in the sand and attacks its prey within it. Because ofits small size (<13 mm shell height), bivalve prey isalso small and this study demonstrates a preference for K. scalarinaof 5 mm shell length, i.e. juveniles. Laboratory experimentsalso suggested a possible preference for attack of the rightvalve. Lepsiella paivae can and does, however, attack largerprey (up to 15 mm shell length), but cannot consume themcompletely. A second visit to Princess Royal Harbour in theAustral winter, when there was no juvenile K. scalarina present,showed L. paivae to be attacking at the sand surface, also bydrilling, the small (<4 mm) gastropod Hydrococcus brazieri(Hydrococcidae). SEM studies of experimentally determined drillholes of L. paivae show them to be of variable form, some straightsided, others bevelled (like a naticid) and <500 µmin diameter. On this sheltered Southern Ocean beach, therefore,L. paivae has specialized to attack juvenile bivalves by burrowingafter them. It can, however, attack other species opportunisticallyon the sand surface when seasonally favoured juvenile bivalveprey are not present. (Received 8 January 2005; accepted 16 March 2005)  相似文献   

20.
Anthropogenic water management projects and facilities that alter the local and regional hydrology of riverine environments greatly influence the behavior, physiology, and survival of native fishes. To mitigate for losses of native fishes at these structures, many are outfitted with fish-exclusion screens to reduce entrainment. The effect of fish size and age on behavior near fish screens, however, is largely unknown. Therefore, we tested two size classes of juvenile green sturgeon (Acipenser medirostris; small, early juveniles: 9.2 ± 0.2 cm fork length [FL], 6.9 ± 0.3 g; intermediate juveniles: 18.8 ± 0.2 cm FL, 36.9 ± 0.8 g) near fish-exclusion screens in a laboratory swimming flume. Although size was a significant factor influencing the way in which fish contacted the screens (i.e., proportion of body contacts, p = 2.5 × 10?9), it did not significantly influence the number of times fish contacted screens or the amount of time fish spent near screens. We also compared the performance of these two size classes to that of older and larger sturgeon that were tested previously (29.6 ± 0.2 cm FL, 147.1 ± 3.1 g), and documented a clear difference in the behavior of the fish that resulted in disparities in how the large fish contacted screens relative to small- or intermediate-sized juveniles (p = 0.005, 5.4 × 10?4, respectively). Our results further our understanding of how ontogeny affects fish behavior near anthropogenic devices, and are informative for managers seeking to identify the most susceptible size and age class of juvenile green sturgeon to water-diversion structures to potentially develop size-specific conservation strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号