首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lars Gutow 《Hydrobiologia》2003,503(1-3):45-48
Idotea metallica establishes self-sustaining populations exclusively on objects drifting at the sea surface. Large-scale transport of drift material with surface currents results in an efficient dispersal of the species. Two types of drifting objects are utilised (biotic and abiotic), providing quite different conditions of life. Ephemeral biotic substrata (mainly uprooted macroalgae) may be used for transport and food, however, resulting habitat destruction from feeding must be a major threat for local population persistence of I. metallica. Abiotic substrata or wood represent efficient vectors for long-distance dispersal due to their resistance to biodegradation, but do not provide food for this herbivorous species. In laboratory experiments, the spatially-limited conditions of drifting substrata were simulated in microcosms. Idotea metallica established persistent populations on both types of substrata. On abiotic substrata, however, where the animals were fed only on Artemia larvae, high variations in density and a reduced intrinsic rate of population growth increased the risk of population extinction. Idotea metallica avoids habitat destruction by limited feeding on macroalgae. In contrast, the coastally distributed congener Idotea baltica destroyed algal habitats by feeding about 10 times faster than I. metallica.  相似文献   

2.
Habitat use in marine invertebrates is often influenced by multiple abiotic and biotic factors. Substratum composition is one factor known to have a dramatic effect on habitat selection. The Australasian burrowing isopod (Sphaeroma quoianum, H. Milne Edwards 1840) is a common introduced species in many estuaries on the Pacific coast of North America. S. quoianum burrows into a variety of firm substrata including marsh banks (composed of peat, clay, and/or mud), wood, friable rock, and Styrofoam floats. In some areas, isopods achieve high densities and may accelerate the rate of shoreline erosion and damage marine structures; thus, understanding the substratum preference of this species may be important for conservation and management efforts. Field experiments were conducted in Coos Bay, Oregon to examine substratum preference, burrowing rates, and the life stage of colonizers. In three experimental trials (Fall 2005, Spring 2006, Fall 2006), replicates of four intertidal substrata (marsh banks, decayed wood, sandstone, Styrofoam) were deployed near intertidal populations of S. quoianum. The numbers of burrows created in each substratum were enumerated weekly or daily (depending on trial). After the trials were completed, the total numbers of isopods inhabiting each substratum were counted. In weeks, S. quoianum extensively burrowed the substrata but exhibited a distinct preference for decayed wood. Significantly more isopods were present in wood than the other substrata at the end of the experiments and rates of burrowing were greatest in wood, although significance varied across time in one trial. Nearly 90% of colonizing isopods were under 5 mm in length suggesting that juvenile isopods primarily colonize intertidal substrata. Differences between burrow densities measured in the field and the results from these preference trials may indicate other factors, such as relative availability of substrata, recruitment and dispersal limitations, and possible gregarious behavior also influence local isopod densities.  相似文献   

3.
In contrast to marine organisms whose offspring go through an extended planktonic stage, the young of others develop directly into benthic juveniles or into yolky nonfeeding larvae that spend only a few hours in the plankton before settling. Yet, paradoxically, many such species have geographic distributions that are comparable to those with a pelagic dispersal stage. This article reviews some of the ways in which these organisms can expand their distributions: drifting, rafting, hitchhiking, creeping, and hopping. Drifting applies to species in which larvae may be short-lived, but adults can detach or be detached from their benthic substratum and be passively carried to new areas, floating at the water's surface or below it. Many encrusting species and mobile species can spread by rafting, settling on natural or artificial floating substrata which are propelled by wind and currents to new regions. Hitchhiking applies to those attaching to vessels or being carried in ballast water of ships to a distant region in which their offspring can survive. Other marine species extend their distributions by hopping from one island of hard substratum or favorable sedimentary microhabitat to another, while creeping species extend their distributions along shores or shelves where habitats remain similar for long distances.  相似文献   

4.
A field study was designed to concurrently evaluate differences in colonization by benthic macroinvertebrates on a range of artificial substratum types (single particles of natural rock or clay brick and baskets of natural substratum) after three colonization periods (1, 8 and 29 days). Fauna on the artificial substrata were compared to natural substratum and the effect of natural epilithic cover on colonization by zoobenthos was determined. Densities of total number of organisms and the seven most abundant taxa, total number of taxa and quantity of organic material were greater on the natural substratum than on the artificial substratum types. Relative abundances of taxa on pairs of the artificial substratum types, unlike pairs of each artificial substratum type and the natural substratum, were statistically correlated. Among the artificial substratum types densities of total number of organisms and about one-half of the most abundant taxa, total number of taxa and quantity of organic material were greatest in the substratum baskets. Natural epilithic cover on the single rock particles and substratum baskets affected the densities of total number of organisms and two of the seven most abundant taxa. These taxonomic groups were at approximately two to six-fold greater densities on the substrata with fine sediment. consistent patterns in densities of the zoobenthos on the substrata were found after each colonization period. In our study all measures of the macroinvertebrate assemblages (densities of each taxon, total number of organisms, total number of taxa and relative abundances of taxa), with few exceptions, were different between each artificial substratum type and natural substratum. This result showed the abundance and composition of the macroinvertebrate fauna on artificial substratum types were different from the natural substratum. Therefore, the choice of using artificial substrata instead of direct sampling of the natural substratum should be carefully made. Among the artificial substratum types relative abundances of taxa were similar on the single substratum particles and substratum baskets indicating single particles instead of baskets might be used to sample the zoobenthos. Investigators should consider the potential effect of the natural epilithic cover of substratum particles on colonization by zoobenthos when choosing the type of artificial substratum.  相似文献   

5.
To gain insight into mechanisms controlling ecosystem regeneration, we investigated a grassland that was heavily polluted by a phosphate fertilizer factory between 1960 and 1990. Abiotic and biotic filters that influenced species assemblage and succession were monitored and restoration approaches assessed. Studies included the investigation of soil parameters, impact of abiotic stress on microbes and plants, plant succession, recolonization mechanisms, functional group interactions, mycorrhizal diversity and function, and food web analysis. Results indicate that after cessation of pollution, the system had high potential for self‐recovery. About 15 years of research are now summarized by interrelating the results of all projects and fitting them into one conceptual model.  相似文献   

6.
We analyzed species number of macroalgae in relation to environmental variables at two spatial levels comprising 202 individual sites and 26 entire estuaries in Denmark. The species number of macroalgae increased with salinity and declined with nutrient concentrations both at the sites and in the estuaries. Availability of hard substratum was associated with higher species richness at the sites. The number of macroalgal species in the estuaries increased with higher mean depth and longer coastline, suggesting that both the vertical and horizontal extension of the colonization area are important for the maximum representation of macroalgal species. Mean depth explained as a single predictor 60% of the variability in species number in entire estuaries. Estuaries with high mean depth also tend to be large and have high salinity and transparent waters due to efficient exchange with open waters. In conclusion, we find that the regulation of species richness of macroalgae in Danish estuaries, though complex, is influenced predictably by salinity, water transparency, nutrient concentration, and availability of hard substrata.  相似文献   

7.
Qiang Yang  Bo Li  Evan Siemann 《Oikos》2015,124(2):216-224
Exotic plant species may exhibit abiotic niche expansions that enable them to persist in a greater variety of habitat types in their introduced ranges than in their native ranges. This may reflect variation in limitation by different abiotic niche dimensions (realized niche shift) or phenotypic effects of biotic interactions that vary among ranges (realized niche expansion). Novel abiotic and biotic environments in the introduced range may also lead to genetic changes in exotic plant traits that enhance their abiotic stress tolerance (fundamental niche expansion). Here, we investigated how biotic interactions (aboveground herbivory and soil organisms) affect plant salinity tolerance using the invasive species Triadica sebifera from China (native range) and US (introduced range) populations grown in common gardens in both ranges. Simulated herbivory significantly reduced survival in saline treatments with reductions especially large at low salinity. Soil sterilization had a negative effect on survival at low salinity in China but had a positive effect on survival at low salinity in the US. Triadica survival and biomass were higher for US populations than for China populations, particularly in China but salinity tolerance did not depend on population origin. On average, arbuscular mycorrhizal (AM) colonization was higher for US populations, US soils and low salinity. These factors had a significant, positive, non‐additive interaction so that clipped seedlings from US populations in low saline US soils had high levels of AM colonization. Overall, our results show that phenotypic biotic interactions shape Triadica's salinity tolerance. Positive and negative biotic interactions together affected plant performance at intermediate stress levels. However, only aboveground damage consistently affected salinity tolerance, suggesting an important role for enemy release in expanding stress tolerance.  相似文献   

8.
Territorial damselfish are important herbivores on coral reefs because they can occupy a large proportion of the substratum and modify the benthic community to promote the cover of food algae. However, on coastal coral reefs damselfish occupy habitats that are often dominated by unpalatable macroalgae. The aim of this study was to examine whether damselfish can maintain distinctive algal assemblages on a coastal reef that is seasonally dominated by Sargassum (Magnetic Island, Great Barrier Reef). Here, three abundant species (Pomacentrus tripunctatus, P. wardi and Stegastes apicalis) occupied up to 60% of the reef substrata. All three species promoted the abundance of food algae in their territories. The magnitudes of the effects varied among reef zones, but patterns were relatively stable over time. Damselfish appear to readily co-exist with large unpalatable macroalgae as they can use it as a substratum for promoting the growth of palatable epiphytes. Damselfish territories represent patches of increased epiphyte load on macroalgae, decreased sediment cover, and enhanced cover of palatable algal turf.  相似文献   

9.
Habitat structure has pervasive effects on community composition and diversity, with physically complex habitats often containing more species than physically simple ones. What factors or mechanism drive this pattern is little understood, but a complicating problem is that different sources of habitat structure can be confounded in both surveys and experiments. In this study, we carried out an experiment in which two sources of habitat structure, attached macroalgae and substrate surface texture, were separately manipulated to discern their joint and separate effects upon the diversity and composition of colonizing macroinvertebrates in a stony, upland stream. Because stream algae vary markedly in abundance in both space and time, we also sampled the epilithon of stream stones at two spatial scales on eight dates over 2 years to gain some preliminary data on how stream algae vary between individual substrata over time. Experimental substrata had either a smooth (siltstones, sandstones, crystal-poor felsic volcanics, plain paving bricks) or rough (granodiorites, crystal-rich felsic volcanics, sand-blasted paving bricks) surface. We allowed these substrata to be colonized naturally by macroalgae, mostly the filamentous red alga Audouinella hermannii. Half of each of the rough and smooth substrata were selected at random and the macroalgae gently sheared off. All substrata were defaunated with a household insecticide with little field persistence, set out randomly through the study riffle, and invertebrates allowed to colonize them for 14 days. Some substrata were sampled immediately to check the efficacy of faunal and algal removals, which proved to be successful. Experimental results showed that both surface texture and macroalgae increase species richness independently of each other. Surface texture had no effect on densities, while macroalgae increased colonization densities, but rarefaction showed that both sources of habitat structure increased species richness above values expected simply on the basis of the numbers of colonists. However, reference stones with high macroalgal cover had the same species richness as those with low cover, suggesting that the effects of macroalgae on species richness are transient relative to those associated with surface texture. Epilithon samples taken at different times suggest that the magnitude of spatial variation in plant growth alters with time. If plants generally recolonize rough surfaces more quickly than smooth, then the effects of habitat structure on macroinvertebrates ought to be strongest after major disturbances during growing seasons of plants. Received: 1 September 1999 / Accepted: 10 January 2000  相似文献   

10.
植被原生演替研究进展   总被引:5,自引:0,他引:5  
许中旗  李文华  鲍维楷  许晴 《生态学报》2005,25(12):3383-3389
对植被原生演替的国内外研究进展进行了评述。植被原生演替过程受到生物因素和非生物因素的共同影响。生物因素包括种子的传播方式、对原生环境的适应能力及物种之间的关系等,依靠风力传播、对裸地的极端环境具有较强适应能力的物种更容易成为原生裸地的早期定居者,某些微生物在植物的定居具有非常重要的作用。非生物因素则包括裸地表面的形状(凹、凸、平)、粗糙度、与岩石的距离等,一些特殊的微环境能够为植物的定居创造更为优越的水分、养分条件,促进植物的定居。植被原生演替是生物驱动因素与环境阻力相互作用的结果,二者的消长决定原生演替进行的模式。大量的研究表明,植被原生演替过程并不完全遵循地衣-苔藓-草本植物-木本植物的顺序,不同环境条件下的植被原生演替过程表现出明显的复杂性,这种复杂性与原生裸地环境条件的复杂性有关。该领域的研究将侧重于以下两个方面:早期定居种的适生特征(包括解剖的和生理的)以及各种微生物对植物定居过程的影响;各种非生物环境因素对植物定居的影响。  相似文献   

11.
Subtidal fouling assemblages usually consist of short-lived organisms. Colonisation sequences on man-made structures may thus be greatly affected by the temporal and spatial variability of propagule supply. This study explores the influence of seasonality on succession in the macrofouling assemblage of a Patagonian harbour (Argentina, Southwest Atlantic). Replicated artificial substrata were suspended horizontally and sampled at quarterly intervals during 1?year. The influence of seasonality on 1-year-old assemblages was further analysed using additional sets of replicated panels submersed at different seasons and collected 1?year later. Upper surfaces were always dominated by ephemeral algae, while lower surfaces exhibited high coverage of filter-feeding invertebrates. Regardless of submersion length, species richness was significantly higher on lower than on upper surfaces. A significant interaction between orientation and submersion length was found for the Shannon diversity index, meaning that temporal changes in diversity depended on substratum orientation. On the lower surfaces, diversity reached a maximum after 9?months and then declined, mainly due to extensive dislodgment of two species of ascidians. On algal-dominated upper surfaces, differences in structure of annual assemblages were due to seasonal changes in the abundance of ephemeral algae. This study shows that constancy or variability of 1-year-old assemblages whose development began at different seasons depended greatly on the life history of the organisms that settled and managed to persist on both surfaces, which in turn depended on substratum orientation.  相似文献   

12.
Saproxylic succession in fire-killed black spruce [Picea mariana (Mill.) B.S.P.] coarse woody debris (CWD) in northern Quebec is estimated in this study using a 29-yr postfire chronosequence. Sampling was performed using both trunk-window traps and rearing from snag and log sections. A total of 37,312 arthropods (>220 taxa) were collected from both sampling methods. Two distinct colonization waves were identified. The onset of initial colonization occurs the year of the fire, whereas the second colonization phase begins only once debris falls to the ground. The initial colonization step is influenced by fire-associated species including subcortical predators, xylophages, and ascomycetes feeders. Abundance of most early colonizer species decline with time since fire with the disappearance of subcortical habitat. No noticeable species turnover occurred in snags thereafter. Lack of succession in snags is related to very low decomposition rates for postfire CWD because this substrate is unsuitable for species associated with highly decayed wood. Snag falling triggers fungal growth and concomitant saproxylic succession toward micro- and saprophagous species and increases accessibility for soil-dwelling organisms. Because the position of woody debris greatly influences overall physical properties of dead wood, the fall of burned CWD plays a major role in saproxylic community shift after fire.  相似文献   

13.
Bryozoans are colonial invertebrates that often dominate epibenthic assemblages on the lower surfaces of hard substrata. Competition among neighbouring organisms is usually a critical process regulating biodiversity, and hard substrata have proved to be a suitable model habitat to analyse spatial interactions. We explored the relationships among abundance, species richness, diversity, competitive ability, coverage, available surface, depth and substratum size in an assemblage of bryozoans encrusting pebbles and cobbles in a bank off the eastern mouth of the Strait of Magellan. We also tested whether overgrowth competition can be regarded as hierarchical, and whether the species abundance distribution shows a mode of rare species and a decreasing frequency of increasingly abundant species. Abundance, species richness, diversity and overgrowth competition were highest on the largest substrata. Smaller pebbles tended to be encrusted by the commonest bryozoans, while the rarest species were mainly found on relatively larger clasts. A high proportion of the lower surfaces of most substrata was available for growth. Diversity values of relatively shallow stations were lower than expected under Caswell’s neutral model. Interspecific competition was hierarchical, but the abundance of colonies was not related to the competitive ability of each species. The species abundance distribution was bimodal, with a main mode of rare species and a second one partly composed of relatively abundant bryozoans with poor competitive abilities. This study shows that even in an encrusting assemblage where competition is hierarchical, the weakest competitors persist and the dominant species are far from being capable of monopolizing space.  相似文献   

14.
15.
In this study, patterns of community development were investigated within vs. outside 'habitats'. These habitats represented five different monospecific assemblages of one of the following species: the brown alga Fucus serratus, the red alga Delesseria sanguinea, the green alga Enteromorpha intestinalis, the seagrass Zostera marina and the blue mussel Mytilus edulis. Natural assemblages were allowed to develop on paired artificial substrata-separated by ca. 1 m-within (treatment) vs. outside (control) of habitats. The same colonizer species settled on treatment and control substrata for given habitats. However, after 5 months of settlement and post-settlement dynamics, their proportional abundance and the structure of treatment and control assemblages differed in many instances. Variability among replicates of a given treatment, seperated by up to 50 m, was large, indicating a patchy spatial distribution of organisms. Despite this spatial heterogeneity among within-treatment replicates, analysis of similarity revealed that in most instances significantly different assemblages developed between treatments on a small spatial scale depending on whether substrata were positioned within as compared to outside a given habitat.Consequently, the algae, seagrass or mussels constituting a habitat seem to control the structure of the benthic assemblage developing in their vicinity by one or more possible mechanisms: reduction of larval advection, exudation of metabolites that influence settlement and/or post-settlement survival, and/or-in the case of mussel assemblages-predation on larvae.In addition to spatial variability in larval supply, stochasticity in succession, substratum heterogeneity, competition and predation effects, this investigation reveals the potential of a further assemblage structuring factor: the impact of neighboring organisms.  相似文献   

16.
1. Habitat heterogeneity in lotic systems is usually associated with the availability of refuges. Heterogeneous habitats (here, rough substrata) should mediate the effect of high‐flow disturbances by protecting benthic algae, thus increasing the resistance and resilience of the system. Additionally, the ability of algae to resist a disturbance and recover after it should be dependent on biological traits that confer resistance and resilience. 2. We designed a field experiment, simulating a high‐flow event with bed movement, to test the effect of substratum roughness on the resistance (assessed as the similarity between samples collected before and immediately after disturbance) and resilience (the similarity between samples collected before and 7 and 15 days after disturbance) of five algal life forms. We evaluated whether algal resistance and resilience were higher on rough than on smooth substrata, and whether the life forms differed in their ability to resist and recover from a disturbance. 3. Rough substrata had higher species richness than smooth substrata at all sampling periods, even immediately after the disturbance. There was no significant effect of substratum roughness on algal resistance and resilience, for both species richness and density of the total assemblage. Neither did roughness affect the resistance and resilience of the total algal assemblage or of the algal life forms separately, when evaluated using multivariate data sets (presence‐absence and quantitative). 4. Algal life forms differed in resistance and resilience; adnate/prostrate and erect/stalked species were more resistant and resilient than the other life forms (filamentous, motile and metaphytic). Additionally, motile species resisted and recovered better than did species that are only loosely associated with the substratum (metaphytic species). 5. Substratum roughness had no pronounced effect on benthic algal resistance and resilience. The results of this and some other studies suggest that the intensity of disturbance determines the importance of habitat heterogeneity and flow refuges for benthic algae in streams.  相似文献   

17.
1. The patterns of colonization of littoral benthos onto hard substrata on an exposed and a sheltered shore of Lake Purrumbete in Victoria, Australia, and the riffles of its outflow stream (Curdies River) were examined experimentally in winter and summer. The common taxa in the lake (gastropods, amphipods, isopods, planarians, ostracods) also occurred in the stream, although they were not abundant. The stream fauna was dominated by insects. 2. Defaunated half-bricks were sampled at each of three sites at the three different locations (exposed shore, sheltered shore, stream) in winter and summer at weekly or biweekly intervals, with natural stones also being sampled during the colonization period. Colonization patterns of individual taxa which occurred in both the lake and stream, and stream-only taxa, were compared using ANOVA, and the changes in the assemblage through time and between locations were analysed with non-metric multidimensional scaling (NMDS) and analysis of similarities (ANOSIM). 3. Colonization in the lake was very rapid, with species richness and assemblage composition on bricks after just one day matching that of natural stones. Colonization in the stream was slower, the assemblage composition not matching natural stones after 42 days in winter but being comparable after 28 days in summer. There was considerable species turnover during colonization in the stream, but little turnover in the lake, with most common taxa back after one day. There was little difference between the two lake shores in colonization patterns. 4. Taxa that occurred in both lake and stream showed broadly similar patterns of colonization, with early occupancy at high densities. In contrast, stream insects showed a variety of colonization strategies. 5. These results indicate that rates and patterns of colonization on to hard substrata are quite different in Lake Purrumbete compared with its outflowing stream. The rapid colonization in this lake indicates great mobility for much of the fauna on hard substrata, possibly by swimming, benthic crawling or passive drift (even attached to floating vegetation). This may be an appropriate strategy in lake littoral zones where the amount of inhabitable hard substrata and accompanying food resources may be limited.  相似文献   

18.
The abiotic environment has strong influences on the growth, survival, behavior, and ecology of aquatic organisms. Biotic interactions and species life histories interact with abiotic factors to structure the food web. One measure of food-web structure is food-chain length. Several hypotheses predict a linear relationship between one environmental variable (e.g., disturbance or ecosystem size) and food-chain length. However, many abiotic and biotic variables interact in diverse ways to structure a community, and may affect other measures of food web structure besides food-chain length. This study took a multivariate approach to test the influence of several important environmental variables on four food-web characteristics measured in nine ponds along a hydroperiod gradient over two years. This approach allowed for testing the ecosystem size and dynamic constraints hypotheses while in context of other possibly interacting environmental variables. The relationship between amphibian and invertebrate communities and pond habitat variables was assessed to understand the underlying food-web structure. Hydroperiod and pond area had a strong influence on amphibian and invertebrate communities, trophic diversity and δ15N range. The range in δ13C values responded strongly to dissolved oxygen. Food-chain length responded to multiple environmental variables. Invertebrate and amphibian communities were structured by pond hydroperiod which in turn influenced the trophic diversity of the food web. The results of this study suggest food-chain length is influenced by environmental variation and species assemblage and that a multivariate approach may allow us to better understand the dynamics within and across aquatic food webs.  相似文献   

19.
Phylogeographic studies indicate that many marine invertebrates lacking autonomous dispersal ability are able to achieve trans-oceanic colonization by rafting on buoyant macroalgae. However, less is known about the impact of rafting on on-going population-genetic connectivity of intertidal species associated with buoyant macroalgae. We hypothesize that such species will have higher levels of population-genetic connectivity than those exploiting nonbuoyant substrates such as rock. We tested this hypothesis by comparing nuclear multilocus population-genetic structuring in two sister topshell species, which both have a planktonic larval phase but are fairly well segregated by their habitat preference of low-tidal bull-kelp holdfasts versus mid-to-low tidal bare rock. We analyzed population samples from four sympatric sites spanning 372 km of the east coast of southern New Zealand. The sampled region encompasses a 180 km wide habitat discontinuity and is influenced by a stable, northward coastal current. The level of connectivity was high in both species, and neither of them showed significant correlation between genetic and geographic distances. However, a significant negative partial correlation between genetic distance and habitat discontinuity was found in the rock-associated species, and estimates of migrant movement between sites were somewhat different between the two species, with the kelp-associated species more often yielding higher estimates across the habitat discontinuity, whereas the rock-associated species more often exhibited higher estimates between sites interspersed by rock habitats. We conclude that for species with substantial means of autonomous dispersal, the most conspicuous consequence of kelp dwelling may be enhanced long-distance dispersal across habitat discontinuities rather than a general increase of gene flow.  相似文献   

20.
Adhesive systems are ubiquitous in benthic animals and play a key role in diverse functions such as locomotion, food capture, mating, burrow building, and defence. For benthic animals that release adhesives, surface and material properties and external morphology have received little attention compared to the biochemical content of the adhesives. We address temporary adhesion of benthic animals from the following three structural levels: (a) the biochemical content of the adhesive secretions, (b) the micro‐ and mesoscopic surface geometry and material properties of the adhesive organs, and (c) the macroscopic external morphology of the adhesive organs. We show that temporary adhesion of benthic animals is affected by three structural levels: the adhesive secretions provide binding to the substratum at a molecular scale, whereas surface geometry and external morphology increase the contact area with the irregular and unpredictable profile of the substratum from micro‐ to macroscales. The biochemical content of the adhesive secretions differs between abiotic and biotic substrata. The biochemistry of the adhesives suitable for biotic substrata differentiates further according to whether adhesion must be activated quickly (e.g. as a defensive mechanism) or more slowly (e.g. during adhesion of parasites). De‐adhesion is controlled by additional secretions, enzymes, or mechanically. Due to deformability, the adhesive organs achieve intimate contact by adapting their surface profile to the roughness of the substratum. Surface projections, namely cilia, cuticular villi, papillae, and papulae increase the contact area or penetrate through the secreted adhesive to provide direct contact with the substratum. We expect that the same three structural levels investigated here will also affect the performance of artificial adhesive systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号