首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neustonic isopod Idotea metallica inhabits objects drifting at the sea surface. Animals found on floating patches represent not just ephemeral assemblages but persistent local populations. Drift material collected in the Mediterranean, the North Atlantic, and the North Sea harboured populations of up to about 50 animals including all developmental stages. In laboratory experiments the species proved to be able to establish populations on spatially limited, isolated substrates. The capacity of 5-litre-microcosms for I. metallica was about 130 animals. In the presence of the coastally distributed congener Idotea baltica, however, laboratory populations of I. metallica went extinct within 12 weeks. Even though high colonisation rates can be expected in coastal waters because of high patch densities, metapopulation persistence is mostly restricted to the open sea. In coastal waters extinction rate of local populations increases because of patch destruction and the species' inferiority to coastally distributed competitors. Due to high uncertainties in estimating patch densities, it is difficult to determine the parameters underlying metapopulation dynamics such as the migration rate and the rate of patch occupancy. Electronic Publication  相似文献   

2.
Martin Thiel 《Hydrobiologia》2003,503(1-3):49-57
Rafting on biotic and abiotic substrata has been reported for many benthic marine invertebrates. Here, I describe important characteristics of common floating substrata and review published studies examining the succession of the assemblage on detached macroalgae to identify the most important factors determining this succession. Floating substrata differ in survival time (i.e. before they disintegrate) and in food value, with abiotic materials having high survival times but low food value and some biotic substrata (seagrasses, fresh wood) having high food values but short survival times. Large macroalgae with pneumatocysts may combine high survival times and high food values. Substratum survival and food value have consequences for the species composition of the rafting macrofauna. In general, suspension feeders dominate rafting assemblages on abiotic substrata, while grazing and boring species abound on macroalgae and wood. The succession of the rafting assemblage can be subdivided into three phases during which different processes predominate. During the initial phase some of the original colonizers (if present) disappear from the substratum, either due to active emigration or predation. This short, initial phase is followed immediately by the colonization phase, during which new organisms colonize the rafting substratum. Colonization may be rapid and intense in the beginning but then slows down. Towards the end of the colonization phase, some rafting organisms may reproduce and their offspring recruit within the parental raft. Results from two long-term studies confirmed that the proportion of species with direct development increased with duration of rafting. These successional changes will be most pronounced for large biotic substrata, rendering these particularly suitable for long-distance dispersal of organisms with direct development.  相似文献   

3.
Six species of isopods and 18 species of amphipods were collectedin the neuston of the Bay of Fundy and adjacent waters. Collectionswere made over a grid of stations covering 2.4x104 km2 duringthree spring, three summer and two autumn surveys. No isopodsand only five species of amphipods were found in spring surveys.Isopods and amphipods were diverse and plentiful in the neustonin summer and autumn. Dominant isopods were Idotea baltica andI.metallica, and dominant amphipods were Calliopius laeviusculusand Parathemisto gaudichaudi. Amphipods and isopods reach theneuston of the Bay of Fundy in three ways. Idotea metallica,the only euneustonic species present, was probably advectedinto the Bay of Fundy from southern waters in summer, and didnot appear to overwinter in the Bay. Most species, includingI.baltica, were collected with drifting littoral vegetation,and we suggest that transport by surface currents is an importantfactor in dispersal of some shoreline crustaceans. Midwaterplankton, such as Parathemisto gaudichaudi, reached the neustoneither by advection in upwelling waters or by an extension oftheir normal diel vertical distribution.  相似文献   

4.
Seed dispersal by ants (myrmecochory) can be influenced by changes to ant assemblages resulting from habitat disturbance as well as by differences in disperser behaviour. We investigated the effect of habitat disturbance by fire on the dispersal of seeds of a myrmecochorous shrub, Pultenaea daphnoides. We also investigated the consequence of the seed relocation behaviours of two common dispersers (Pheidole sp. A and Rhytidoponera metallica) for the redispersal of seeds. Pheidole sp. A colonies did not relocate seeds outside their nests. In contrast, R. metallica colonies relocated 43.6 % of seeds fed to them, of which 96.9 % had residual elaiosome that remained attached. On average, R. metallica relocated seeds 78.9 and 60.7 cm from the nest entrances in burned and unburned habitat, respectively. Seeds were removed faster in burned than in unburned habitat, and seeds previously relocated by R. metallica were removed at similar rates to seeds with intact elaiosomes, but faster than seeds with detached elaiosomes. Dispersal distances were not significantly different between burned (51.3 cm) and unburned (70.9 cm) habitat or between seeds with different elaiosome conditions. Differences between habitat types in the frequency of seed removal, the shape of the seed dispersal curve, and the relative contribution of R. metallica and Pheidole sp. A to seed dispersal were largely due to the effect of recent fire on the abundance of Pheidole sp. A. Across habitat types, the number of seeds removed from depots and during dispersal trials most strongly related to the combined abundances of R. metallica and Pheidole. Our findings show that myrmecochory can involve more than one dispersal phase and that fire indirectly influences myrmecochory by altering the abundances of seed-dispersing ants.  相似文献   

5.
The amphipod Caprella andreae Mayer, 1890 was recorded for the first time in Southern Iberian Peninsula (36°44′15″N, 3°59′38″W). This species is the only obligate rafter of the suborder Caprellidea and has been reported to attach not only to floating objects such as ropes or driftwoods but also to turtle carapaces. Mitochondrial and nuclear markers were used to examine dispersal capabilities and population genetic structure of C. andreae across seven localities in the Mediterranean and Atlantic Ocean collected from floating substrata with different dispersal patterns. The strong population differentiation with no haplotypes shared between populations suggests that C. andreae is quite faithful to the substratum on which it settles. In addition, the proportionally higher genetic diversity displayed in populations living on turtles as well as the presence of highly differentiated haplotypes in the same turtle population may be indicative that these populations survive longer, which could lead C. andreae to prefer turtles instead of floating objects to settle and disperse. Therefore, rafting on floating objects may be sporadic, and ocean currents would not be the most important factor shaping patterns of connectivity and population structure in this species. Furthermore, molecular phylogenetic analyses revealed the existence of a cryptic species whose estimates of genetic divergence are higher than those estimated between C. andreae and other congeneric species (e.g. Caprella dilatata and Caprella penantis). Discovery of cryptic species among widely distributed small marine invertebrates is quite common and, in this case, prompts for a more detailed phylogenetic analysis and taxonomic revision of genus Caprella. On the other hand, this study also means the first record of the gammarids Jassa cadetta and Elasmopus brasiliensis and the caprellid Caprella hirsuta on drifting objects.  相似文献   

6.
In 1988 a long-term study was started of the isopod fauna associated with surface drift material off Helgoland (German Bight, North Sea). In the summer of 1994 specimens ofIdotea metallica Bosc were recorded for the first time. There is no evidence that this species has ever been present in the German Bight before. The samples contained males, both gravid and non-gravid females, and juveniles, indicating that the species reproduced successfully in the Helgoland region. Interbreeding of specimens from Helgoland and the western Mediterranean produced fertile off-spring. As a neustonic species,I. metallica shows a high natural capacity for dispersal. It thus seems unlikely that the arrival of the species in the North Sea resulted from an accidental introduction by man. We are probably witnessing an extension of the species’ geographical range by natural means of dispersal, as a response to recent changes in the ecological conditions of the German Bight. Temperature data measured by the Biologische Anstalt Helgoland since 1962 show that the last decade (except 1996) was characterized by unusually mild winters. Following the severe winter of 1996,I. metallica was again absent from the Helgoland region. After the subsequent mild winters (1997 and 1998), however, the species reappeared in the summer of 1998 with higher numbers than ever before. This suggests that the observed phenomena are closely connected with the recent temperature anomalies.I. metallica can be regarded as a potential immigrant to a warmer North Sea, and may be useful as a sensitive indicator of the predicted long-term warming trend.  相似文献   

7.
Habitat use in marine invertebrates is often influenced by multiple abiotic and biotic factors. Substratum composition is one factor known to have a dramatic effect on habitat selection. The Australasian burrowing isopod (Sphaeroma quoianum, H. Milne Edwards 1840) is a common introduced species in many estuaries on the Pacific coast of North America. S. quoianum burrows into a variety of firm substrata including marsh banks (composed of peat, clay, and/or mud), wood, friable rock, and Styrofoam floats. In some areas, isopods achieve high densities and may accelerate the rate of shoreline erosion and damage marine structures; thus, understanding the substratum preference of this species may be important for conservation and management efforts. Field experiments were conducted in Coos Bay, Oregon to examine substratum preference, burrowing rates, and the life stage of colonizers. In three experimental trials (Fall 2005, Spring 2006, Fall 2006), replicates of four intertidal substrata (marsh banks, decayed wood, sandstone, Styrofoam) were deployed near intertidal populations of S. quoianum. The numbers of burrows created in each substratum were enumerated weekly or daily (depending on trial). After the trials were completed, the total numbers of isopods inhabiting each substratum were counted. In weeks, S. quoianum extensively burrowed the substrata but exhibited a distinct preference for decayed wood. Significantly more isopods were present in wood than the other substrata at the end of the experiments and rates of burrowing were greatest in wood, although significance varied across time in one trial. Nearly 90% of colonizing isopods were under 5 mm in length suggesting that juvenile isopods primarily colonize intertidal substrata. Differences between burrow densities measured in the field and the results from these preference trials may indicate other factors, such as relative availability of substrata, recruitment and dispersal limitations, and possible gregarious behavior also influence local isopod densities.  相似文献   

8.
Modeling species' habitat requirements are crucial to assess impacts of global change, for conservation efforts and to test mechanisms driving species presence. While the influence of abiotic factors has been widely examined, the importance of biotic factors and biotic interactions, and the potential implications of local processes are not well understood. Testing their importance requires additional knowledge and analyses at local habitat scale. Here, we recorded the locations of species presence at the microhabitat scale and measured abiotic and biotic parameters in three different common lizard (Zootoca vivipara) populations using a standardized sampling protocol. Thereafter, space use models and cross‐evaluations among populations were run to infer local processes and estimate the importance of biotic parameters, biotic interactions, sex, and age. Biotic parameters explained more variation than abiotic parameters, and intraspecific interactions significantly predicted the spatial distribution. Significant differences among populations in the relationship between abiotic parameters and lizard distribution, and the greater model transferability within populations than between populations are in line with effects predicted by local adaptation and/or phenotypic plasticity. These results underline the importance of including biotic parameters and biotic interactions in space use models at the population level. There were significant differences in space use between sexes, and between adults and yearlings, the latter showing no association with the measured parameters. Consequently, predictive habitat models at the population level taking into account different sexes and age classes are required to understand a specie's ecological requirements and to allow for precise conservation strategies. Our study therefore stresses that future predictive habitat models at the population level and their transferability should take these parameters into account.  相似文献   

9.
The intertidal periwinkleLittorina saxatilis completely lacks larval dispersal and adult vagility is low. Although this suggests a low dispersal rate,L. saxatilis is frequently found in recently established habitats “exotic” to the Wadden Sea. Populations occur on man-made structures like dikes, breakwater and groynes, some of which are not older than several years. Furthermore,L. saxatilis is found on marsh grassSpartina anglica, introduced to the Wadden Sea in the 1920s and 1930s, as well as on mats of green macroalgae, which have become an abundant feature on the tidal flats since the late 1970s. Seagrass beds are likely to be the original habitat ofL. saxatilis in the Wadden Sea. Since seagrass populations have dramatically declined over the last decades, colonization of new habitat types enabledL. saxatilis to maintain its Wadden Sea populations despite a changing environment. Colonizers can reach new habitats by means of passive transport, especially by rafting on macrophytes and by aerial dispersal attached to birds. In thew Wadden Sea, the ovoviviparously reproducingL. saxatilis has demonstrated its ability to successfully found new populations with only a few individuals. No reduction of genetic variablility (founder effect) was observed in recently established populations.  相似文献   

10.
Parasite local adaptation, the greater performance of parasites on their local compared with foreign hosts, has important consequences for the maintenance of diversity and epidemiology. While the abiotic environment may significantly affect local adaptation, most studies to date have failed either to incorporate the effects of the abiotic environment, or to separate them from those of the biotic environment. Here, we tease apart biotic and abiotic components of local adaptation using the bacterium Pseudomonas fluorescens and its viral parasite bacteriophage Φ2. We coevolved replicate populations of bacteria and phages at three different temperatures, and determined their performance against coevolutionary partners from the same and different temperatures. Crucially, we measured performance at different assay temperatures, which allowed us to disentangle adaptation to biotic and abiotic habitat components. Our results show that bacteria and phages are more resistant and infectious, respectively, at the temperature at which they previously coevolved, confirming that local adaptation to abiotic conditions can play a crucial role in determining parasite infectivity and host resistance. Our work underlines the need to assess host–parasite interactions across multiple relevant abiotic environments, and suggests that microbial adaption to local temperatures can create ecological barriers to dispersal across temperature gradients.  相似文献   

11.
The in situ grazing experiments were performed in the shallow water rocky habitat of the northern Baltic Sea during ice-free season 2002. In the experiments the effects of algal species and choice on the grazing of the mesoherbivores Idotea baltica (Pallas) and Gammarus oceanicus Segerstråle were tested. Salinity, temperature, concentration of nutrients in water and macroalgae and net production of macroalgae were considered as random effects in the analysis. The invertebrate feeding rate was mainly a function of the net photosynthetic activity of Pylaiella littoralis (L.) Kjellman and Fucus vesiculosus L. Feeding rate increased significantly with decreasing algal photosynthetic activity. When the two algal species were incubated together invertebrates fed primarily on P. littoralis. Low selectivity towards P. littoralis coincided with its high photosynthetic activity. The presence of F. vesiculosus did not modify the invertebrate feeding on P. littoralis. The results indicated that (1) the grazing on F. vesiculosus depended on the availability of P. littoralis, (2) the photosynthetic activity of algae explained the best the variation in grazing rate and (3) the grazers are not likely to control the early outbreak of filamentous algae in the northern Baltic Sea by avoiding young and photosynthetically active algae. The likely mechanism behind the relationship is that the increased photosynthetic activity of macroalgae coincides with their higher resistance to herbivory.  相似文献   

12.
Coral reef habitats are characterized by heterogeneity in their structures, trophic balance and their ecology. Parasitism seems to reflect this habitat variability. To study habitat influence, the parasitic faunas of two populations of the dameselfish Stegastes nigricans from fringing reef and barrier reef systems of Tiahura, Moorea island, French Polynesia, were compared. The endoparasite species observed in our study were digeneans of the family Hemiuridea (Lecithastersp. and Aponurus sp.). Prevalence, abundances and mean intensities were significantly higher in the host population from the barrier reef than in the host population from the fringing reef. Other data concerning the coral reef fishes Epinephelus merra and Zebrasoma scopas seem to confirm the influence of habitat on parasite communities. Combined effects of several biotic and abiotic factors particular to each of the habitats are likely to be the causes of the differences in the observed parasite communities.  相似文献   

13.
《Acta Oecologica》2007,31(1):60-68
Habitat destruction and fragmentation severely affected the Atlantic Forest. Formerly contiguous populations may become subdivided into a larger number of smaller populations, threatening their long-term persistence. The computer package VORTEX was used to simulate the consequences of habitat fragmentation and population subdivision on Micoureus paraguayanus, an endemic arboreal marsupial of the Atlantic Forest. Scenarios simulated hypothetical populations of 100 and 2000 animals being partitioned into 1–10 populations, linked by varying rates of inter-patch dispersal, and also evaluated male-biased dispersal. Results demonstrated that a single population was more stable than an ensemble of populations of equal size, irrespective of dispersal rate. Small populations (10–20 individuals) exhibited high instability due to demographic stochasticity, and were characterized by high rates of extinction, smaller values for metapopulation growth and larger fluctuations in population size and growth rate. Dispersal effects on metapopulation persistence were related to the size of the populations and to the sexes that were capable of dispersing. Male-biased dispersal had no noticeable effects on metapopulation extinction dynamics, whereas scenarios modelling dispersal by both sexes positively affected metapopulation dynamics through higher growth rates, smaller fluctuations in growth rate, larger final metapopulation sizes and lower probabilities of extinction. The present study highlights the complex relationships between metapopulation size, population subdivision, habitat fragmentation, rate of inter-patch dispersal and sex-biased dispersal and indicates the importance of gaining a better understanding of dispersal and its interactions with correlations between disturbance events.  相似文献   

14.
Two tick-borne diseases with expanding case and vector distributions are ehrlichiosis (transmitted by Amblyomma americanum) and rickettiosis (transmitted by A. maculatum and Dermacentor variabilis). There is a critical need to identify the specific habitats where each of these species is likely to be encountered to classify and pinpoint risk areas. Consequently, an in-depth tick prevalence study was conducted on the dominant ticks in the southeast. Vegetation, soil, and remote sensing data were used to test the hypothesis that habitat and vegetation variables can predict tick abundances. No variables were significant predictors of A. americanum adult and nymph tick abundance, and no clustering was evident because this species was found throughout the study area. For A. maculatum adult tick abundance was predicted by NDVI and by the interaction between habitat type and plant diversity; two significant population clusters were identified in a heterogeneous area suitable for quail habitat. For D. variabilis no environmental variables were significant predictors of adult abundance; however, D. variabilis collections clustered in three significant areas best described as agriculture areas with defined edges. This study identified few landscape and vegetation variables associated with tick presence. While some variables were significantly associated with tick populations, the amount of explained variation was not useful for predicting reliably where ticks occur; consequently, additional research that includes multiple sampling seasons and locations throughout the southeast are warranted. This low amount of explained variation may also be due to the use of hosts for dispersal, and potentially to other abiotic and biotic variables. Host species play a large role in the establishment, maintenance, and dispersal of a tick species, as well as the maintenance of disease cycles, dispersal to new areas, and identification of risk areas.  相似文献   

15.
Orav-Kotta  Helen  Kotta  Jonne 《Hydrobiologia》2004,514(1-3):79-85
The isopod Idotea baltica is the most important benthic herbivore in the Baltic Sea. There exists a significant correlation between the distribution of the adult isopod and the belts of bladder wrack Fucus vesiculosus. However, following the eutrophication induced blooms of the filamentous macroalga Pilayella littoralis and the disappearance of F. vesiculosus a notable increase in idoteid abundances has been observed. The aim of this paper was (1) to evaluate experimentally whether F. vesiculosus provides either food, shelter or both to the isopods and (2) to estimate the role of associated filamentous algae in the habitat selection process. Amongst six abundant macroalgal species, about 50% of isopod population was attracted to F. vesiculosuscovered with the filamentous algae P. littoralis. The majority of the remaining part of the population was either swimming freely or attracted to non-epiphytic P. littoralis. When both live algae and artificial substrata were provided, P. littoralis growing on artificial substrata was clearly preferred by the isopods over epiphyte-free F. vesiculosus. In the grazing experiment where I. baltica was allowed to choose between F. vesiculosus and P. littoralis the latter contributed practically 100% of the diet of the isopod. The results indicate the importance of P. littoralis as a food item and F. vesiculosus as a shelter for I. baltica.  相似文献   

16.
Coastal populations are often connected by unidirectional current systems, but the biological effects of such asymmetric oceanographic connectivity remain relatively unstudied. We used mtDNA analysis to determine the phylogeographic origins of beach‐cast bull‐kelp (Durvillaea antarctica) adults in the Canterbury Bight, a 180 km coastal region devoid of rocky‐reef habitat in southern New Zealand. A multi‐year, quantitative analysis supports the oceanographically derived hypothesis of asymmetric dispersal mediated by the north‐flowing Southland Current. Specifically, 92% of beach‐cast specimens examined had originated south of the Bight, many drifting north for hundreds of kilometres, and some traversing at least 500 km of ocean from subantarctic sources. In contrast, only 8% of specimens had dispersed south against the prevailing current, and these counter‐current dispersers likely travelled relatively small distances (tens of kilometres). These data show that oceanographic connectivity models can provide robust estimates of passive biological dispersal, even for highly buoyant taxa. The results also indicate that there are no oceanographic barriers to kelp dispersal across the Canterbury Bight, indicating that other ecological factors explain the phylogeographic disjunction across this kelp‐free zone. The large number of long‐distance dispersal events detected suggests drifting macroalgae have potential to facilitate ongoing connectivity between otherwise isolated benthic populations.  相似文献   

17.
Local populations of Sulfolobus islandicus diverge genetically with geographical separation, and this has been attributed to restricted transfer of propagules imposed by the unfavorable spatial distribution of acidic geothermal habitat. We tested the generality of genetic divergence with distance in Sulfolobus species by analyzing genomes of Sulfolobus acidocaldarius drawn from three populations separated by more than 8000 km. In sharp contrast to S. islandicus, the geographically diverse S. acidocaldarius genomes proved to be nearly identical. We could not link the difference in genome conservation between the two species to a corresponding difference in genome stability or ecological factors affecting propagule dispersal. The results provide the first evidence that genetic isolation of local populations does not result primarily from properties intrinsic to Sulfolobus and the severe discontinuity of its geothermal habitat, but varies with species, and thus may reflect biotic interactions that act after propagule dispersal.  相似文献   

18.
Gobies that are phylogenetically related or coexist in the same marine and estuarine systems often exhibit abiotic and/or biotic habitat segregation. Thus, it is possible that species of Gymnogobius inhabiting the same riverine estuaries also exhibit abiotic and/or biotic habitat segregation. The goal of this study was to determine the differences in abiotic and biotic habitat use between these species by sampling goby and host shrimps, and by examining the physical environments of the rivers where these species are found. The surveys of goby and host shrimps were conducted in the estuaries of the Saba and Ibo rivers, which drain into the Seto Inland Sea, a body of water that separates three of the four main islands of Japan. We used hand nets and shovels to collect goby and host shrimps, and measured median sediment particle size, elevation, and salinity at each site. Generalized linear models (GLMs) were used to assess the preferences in abiotic and biotic habitat use by the goby species. Median particle size, salinity, and elevation were used as the abiotic environmental predictors, whereas the presence/absence of host shrimps were re-organized into four categories consisting of “Upogebia major” only, “Nihonotrypaea japonica” only, “Upogebia major & Nihonotrypaea japonica,” and “Upogebia yokoyai,” which were used as the biotic environmental predictors. The GLMs demonstrated that median particle size had the largest influence of the abiotic variables, with goby species segregating according to differences in sediments; moreover, there was some evidence suggesting that the host and symbiont do not always correlate at the species level. Our results indicated that although there is some overlap in abiotic and biotic habitat use among the four species of Gymnogobius, the differences were broad enough to provide an explanatory mechanism as to how these species can coexist in the same river systems.  相似文献   

19.
BackgroundOncomelania snails serve as the sole intermediate host for Schistosoma japonicum, one of the most important neglected tropical diseases in the world. Afforestation suppression of the Oncomelania hupensis snail has been a long-term effective national strategy to decrease snail density in China. Many previous studies have made clear that vegetation (biotic factors) and soil (abiotic factors) were the basic requirements for snail survival on beaches. Moreover, a lot of research on snail control has been focused on the specific influencing environmental factors for snail survival, such as the vegetation community structure, species composition, diversity index, and the physical and chemical properties of the soil. Most of the existing research has studied the influence of a single factor on snail population density. Conversely, there have been only a few studies focused on the food sources and food composition of the snails. The current research situation on snail control has indicated that the mechanisms underlying ecological snail control have not been systematically characterized. The question of whether biotic or abiotic factors were more important in influencing snail survival remains unclear. Afforestation on beaches has significantly suppressed snail density in China so far. In this study, we proposed that the reduction of snail density was not affected by a single factor but by the interactions of multiple related factors introduced by afforestation. Moreover, different biotic and abiotic factors have significantly different effects on snail control. Therefore the goal of this study was to evaluate the relative importance and interactions of related biotic and abiotic factors on snail density. Methods: Four major vegetation communities: Sedge, Reed, Artificial poplar (3 years of age) and Artificial poplar (5 years of age), on the beaches of the Yangtze River in China were selected for vegetation and snail surveys, as well as for soil sampling. Structural Equation Model (SEM) analysis was used to assess the interactions of biotic and abiotic factors in the context of snail ecology. The soil properties were considered as abiotic factors, while algae of Chlorophyta, Cyanophyta and Bacillariophyta phyla were considered to be biotic factors. In the path analysis, the total effect between the variables was the sum of the direct and indirect effects.ResultsThe snail density had significant correlations with soil properties, such as water content, bulk density, capillary porosity and pH value, as well as with all three types of soil algae, Chlorophyta, Cyanophyta, and Bacillariophyta. Snail density had a direct negative relationship with capillary porosity and soil bulk density, an indirect negative relationship with soil pH value and an indirect positive relationship with soil water content via soil algae. Meanwhile, as an important food source for the snail, the Chlorophyta, Cyanophyta and Bacillariophyta algae had a significant positive correlation with snail density. High soil pH had a negative impact on Chlorophyta, Bacillariophyta, while soil water content had a positive impact on Chlorophyta, and soil bulk density had a negative impact on Cyanophyta. In addition, the soil pH value and soil bulk density both had negative correlations with soil water content.ConclusionAfforestation of the beach environment can significantly reduce the snail population density by altering ecological factors. Soil algae (biological factors) might be the key element that drives ecological snail control. As important habitat determinants, the impact of the properties of the soil (non-biological factors) on the snail population was largely mediated through soil algae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号