首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human internal mammary arteries (IMA) are relatively protected from atherosclerosis. Estrogen plays a protective role in cardiovascular disease. It causes in vitro and in vivo vasodilatation, but the mechanisms are contradictory. To investigate the in vitro vasomotor effect of estrogen on IMA and the role of endothelium, we studied 30 IMA segments harvested from 10 men during coronary artery bypass grafting surgery. Patients with diabetes mellitus, hypercholesterolemia, hypertension, and smoking were excluded. Twenty IMA rings had intact endothelium ((+)Endo) and 10 rings were denuded of endothelium ((-)Endo). Vasomotor response of each ring was expressed as the percentage of maximal response to norepinephrine (NE). Acetylcholine (10(-8)-10(-5) M) given to (+)Endo and (-)Endo rings induced vasorelaxation of 72 +/- 30.4% and vasoconstriction of 48.5 +/- 20.1%, respectively. 17-Beta-estradiol (10(-8)-10(-5) M) given after maximal precontraction with NE induced marked relaxation in (+)Endo (80.9 +/- 39.2%), but no significant vasomotor effect in (-)Endo rings (P < 0.0001). Vasorelaxation to 17-beta-estradiol (10(-6) M) in (+)Endo rings was 64.5 +/- 18.4 and 8.6 +/- 8.4%, before and after 15-min treatment with nitric oxide synthase inhibitor, L-nitroarginine methyl ester, respectively (n = 14, P < 0.0001). Tamoxifen (10(-6) M) decreased 17-beta-estradiol (10(-7) M)-induced relaxation by 71%. In conclusion, 17-beta-estradiol induces endothelium-dependent NO-mediated vasodilation of human mammary arteries in vitro. This response is mediated through estrogen receptors.  相似文献   

2.
Abstract: Within the CNS and under normal conditions, nitric oxide (NO) appears to be an important physiological signalling molecule. Its ability to increase cyclic GMP concentration suggests that NO is implicated in the regulation of important metabolic pathways in the brain. Under certain circumstances NO synthesis may be excessive and NO may become neurotoxic. Excessive glutamate-receptor stimulation may lead to neuronal death through a mechanism implicating synthesis of both NO and superoxide (O2•−) and hence peroxynitrite (ONOO) formation. In response to lipopolysaccharide and cytokines, glial cells may also be induced to synthesize large amounts of NO, which may be deleterious to the neighbouring neurones and oligodendrocytes. The precise mechanism of NO neurotoxicity is not fully understood. One possibility is that it may involve neuronal energy deficiency. This may occur by ONOO interfering with key enzymes of the tricarboxylic acid cycle, the mitochondrial respiratory chain, mitochondrial calcium metabolism, or DNA damage with subsequent activation of the energy-consuming pathway involving poly(ADP-ribose) synthetase. Possible mechanisms whereby ONOO impairs the mitochondrial respiratory chain and the relevance for neurotoxicity are discussed. The intracellular content of reduced glutathione also appears important in determining the sensitivity of cells to ONOO production. It is concluded that neurotoxicity elicited by excessive NO production may be mediated by mitochondrial dysfunction leading to an energy deficiency state.  相似文献   

3.
4.
Nitric oxide (NO) modulates the dynamics of central olfactory networks and has been implicated in olfactory processing including learning. Land mollusks have a specialized olfactory lobe in the brain called the procerebral (PC) lobe. The PC lobe produces ongoing local field potential (LFP) oscillation, which is modulated by olfactory stimulation. We hypothesized that NO should be released in the PC lobe in response to olfactory stimulation, and to prove this, we applied an NO electrode to the PC lobe of the land slug Limax in an isolated tentacle-brain preparation. Olfactory stimulation applied to the olfactory epithelium transiently increased the NO concentration in the PC lobe, and this was blocked by the NO synthase inhibitor L-NAME at 3.7 mM. L-NAME at this concentration did not block the ongoing LFP oscillation, but did block the frequency increase during olfactory stimulation. Olfactory stimulation also enhanced spatial synchronicity of activity, and this response was also blocked by L-NAME. Single electrical stimulation of the superior tentacle nerve (STN) mimicked the effects of olfactory stimulation on LFP frequency and synchronicity, and both of these effects were blocked by L-NAME. L-NAME did not block synaptic transmission from the STN to the nonbursting (NB)-type PC lobe neurons, which presumably produce NO in an activity-dependent manner. Previous behavioral experiments have revealed impairment of olfactory discrimination after L-NAME injection. The recording conditions in the present work likely reproduce the in vivo brain state in those behavioral experiments. We speculate that the dynamical effects of NO released during olfactory perception underlie precise odor representation and memory formation in the brain, presumably through regulation of NB neuron activity.  相似文献   

5.
《Nitric oxide》2000,4(2):94-102
The purpose of this study was to investigate the in vivo effects of intracavernosal injections of galanin and galantide (a specific galanin receptor antagonist) on penile erection in the anesthetized cat. Erectile responses to galanin and galantide were compared with responses to a standard triple drug combination [1.65 mg papaverine, 25 μg phentolamine, and 0.5 μg prostaglandin E1 (PGE1)]. Intracavernosal injections of galanin (3–100 nmol) and galantide (0.1–3 nmol) induced penile erection in a dose-dependent manner. In terms of relative potency, galantide was approximately 100-fold more potent than galanin at increasing cavernosal pressure. The maximal increases in intracavernosal pressure in response to galanin and galantide were 83 and 95%, respectively, of the control triple drug combination. The total durations of erectile response caused by these peptides were significantly shorter (P < 0.05) than those by the triple drug combination. The nitric oxide synthase inhibitor L-NAME (20 mg) significantly decreased the erectile response in the cat to galantide but not to galanin, while the K+ATP channel antagonist U-37883A (3 mg) had no effect on the erectile response to galanin nor galantide. The results of the present study demonstrate that galantide, a putative antagonist for the galanin receptor, has more potent agonist activity than galanin in increasing intracavernosal pressure in the cat. Moreover, these data suggest that galantide, but not galanin, causes penile erection by an NO/cGMP-dependent mechanism. This is the first study to demonstrate that galanin may play a role in the physiology of penile erection.  相似文献   

6.
Abstract: The Ca2+-independent form of nitric oxide synthase was induced in rat neonatal astrocytes in primary culture by incubation with lipopolysaccharide (1 µg/ml) plus interferon-γ (100 U/ml), and the activities of the mitochondrial respiratory chain components were assessed. Incubation for 18 h produced 25% inhibition of cytochrome c oxidase activity. NADH-ubiquinone-1 reductase (complex I) and succinate-cytochrome c reductase (complex II–III) activities were not affected. Prolonged incubation for 36 h gave rise to a 56% reduction of cytochrome c oxidase activity and a 35% reduction in succinate-cytochrome c reductase activity, but NADH-ubiquinone-1 reductase activity was unchanged. Citrate synthase activity was not affected by any of these conditions. The inhibition of the activities of these mitochondrial respiratory chain complexes was prevented by incubation in the presence of the specific nitric oxide synthase inhibitor N G-monomethyl- l -arginine. The lipopolysaccharide/interferon-γ treatment of the astrocytes produced an increase in glycolysis and lactate formation. These results suggest that inhibition of the mitochondrial respiratory chain after induction of astrocytic nitric oxide synthase may represent a mechanism for nitric oxide-mediated neurotoxicity.  相似文献   

7.
8.
Using Percoll density gradient centrifugation, free (nonsynaptosomal) mitochondria were isolated from the dorsal-lateral striatum and paramedian neocortex of rats during complete forebrain ischemia and reperfusion. Mitochondria prepared from either region after 30 min of ischemia showed decreased state 3 (ADP and substrate present) and uncoupled respiration rates (19-45% reductions) with pyruvate plus malate as substrates, whereas state 4 respiration (no ADP present) was preserved. At 6 h of recirculation, state 3 and uncoupled respiration rates for mitochondria from the paramedian neocortex (a region resistant to ischemic damage) were similar to or even increased compared with control values. By contrast, in mitochondria from the dorsal-lateral striatum (a region containing neurons susceptible to global ischemia), decreases in state 3 and uncoupled respiration rates (25 and 30% less than control values) were again observed after 6 h of recirculation. With succinate as respiratory substrate, however, no significant differences from control values were found in either region at this time point. By 24 h of recirculation, respiratory activity with either pyruvate plus malate or succinate was greatly reduced in samples from the dorsal-lateral striatum, probably reflecting complete loss of function in some organelles. In contrast with these marked changes in free mitochondria, the respiratory properties of synaptosomal mitochondria, assessed from measurements in unfractionated homogenates, were unchanged from controls in the dorsal-lateral striatum at each of the time points studied, but showed reductions (19-22%) during ischemia and after 24 h of recirculation in the paramedian neocortex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
目的:观察高脂饮食对SD大鼠血脂水平及胸主动脉环舒张功能的影响及姜黄素对以上改变的影响。方法:健康SD大鼠30只,分高脂饮食组(10只)、正常饮食对照组、高脂饮食+姜黄素组(10只),大鼠行适应性饲养1周后分别给予高脂饮食及正常饮食;于实验开始时、10周及实验结束前测各组大鼠体重,20周后取血测定血清血脂浓度,取胸主动脉测定血管环舒张功能。结果:①高脂饮食喂养的大鼠体重明显高于其他各组大鼠,姜黄素可明显对抗高脂饮食导致的体重升高。②与对照组比较,高脂饮食组TC、TG、LDL-C明显升高(P〈0.01和P〈0.05);③与正常对照组及姜黄素对照组比较,高脂饮食组胸主动脉环的内皮依赖性舒张功能显著减弱(P〈0.05)。结论:①SD大鼠给予高脂饮食后使大鼠血脂水平明显升高,胸主动脉环内皮依赖性舒张功能显著减弱。②姜黄素具有防治高脂饮食导致的血脂升高及改善高脂饮食导致的血管内皮依赖性的舒张功能减退。  相似文献   

11.
The development of the plant root system is highly plastic, which allows the plant to adapt to various environmental stresses. Salt stress inhibits root elongation by reducing the size of the root meristem. However, the mechanism underlying this process remains unclear. In this study, we explored whether and how auxin and nitric oxide (NO) are involved in salt-mediated inhibition of root meristem growth in Arabidopsis (Arabidopsis thaliana) using physiological, pharmacological, and genetic approaches. We found that salt stress significantly reduced root meristem size by down-regulating the expression of PINFORMED (PIN) genes, thereby reducing auxin levels. In addition, salt stress promoted AUXIN RESISTANT3 (AXR3)/INDOLE-3-ACETIC ACID17 (IAA17) stabilization, which repressed auxin signaling during this process. Furthermore, salt stress stimulated NO accumulation, whereas blocking NO production with the inhibitor Nω-nitro-l-arginine-methylester compromised the salt-mediated reduction of root meristem size, PIN down-regulation, and stabilization of AXR3/IAA17, indicating that NO is involved in salt-mediated inhibition of root meristem growth. Taken together, these findings suggest that salt stress inhibits root meristem growth by repressing PIN expression (thereby reducing auxin levels) and stabilizing IAA17 (thereby repressing auxin signaling) via increasing NO levels.Due to agricultural practices and climate change, soil salinity has become a serious factor limiting the productivity and quality of agricultural crops (Zhu, 2007). Worldwide, high salinity in the soil damages approximately 20% of total irrigated lands and takes 1.5 million ha out of production each year (Munns and Tester, 2008). In general, high salinity affects plant growth and development by reducing plant water potential, altering nutrient uptake, and increasing the accumulation of toxic ions (Hasegawa et al., 2000; Munns, 2002; Zhang and Shi, 2013). Together, these effects severely reduce plant growth and survival.Because the root is the first organ to sense high salinity, salt stress plays a direct, important role in modulating root system architecture (Wang et al., 2009). For instance, salt stress negatively regulates root hair formation and gravitropism (Sun et al., 2008; Wang et al., 2008). The role of salt in lateral root formation depends on the NaCl concentration. While high NaCl levels inhibit lateral root formation, lower NaCl levels stimulate lateral root formation in an auxin-dependent manner (Zolla et al., 2010; Ji et al., 2013). The root meristem plays an essential role in sustaining root growth (Perilli et al., 2012). Salt stress inhibits primary root elongation by suppressing root meristem activity (West et al., 2004). However, how this inhibition occurs remains largely unclear.Plant hormones are important intermediary signaling compounds that function downstream of environmental stimuli. Among plant hormones, indole-3-acetic acid (IAA) is thought to play a fundamental role in root system architecture by regulating cell division, expansion, and differentiation. In Arabidopsis (Arabidopsis thaliana) root tips, a distal auxin maximum is formed and maintained by polar auxin transport (PAT), which determines the orientation and extent of cell division in the root meristem as well as root pattern formation (Sabatini et al., 1999). PINFORMED (PIN) proteins, which are components of the auxin efflux machinery, regulate primary root elongation and root meristem size (Blilou et al., 2005; Dello Ioio et al., 2008; Yuan et al., 2013, 2014). The auxin signal transduction pathway is activated by direct binding of auxin to its receptor protein, TRANSPORT INHIBITOR RESPONSE1 (TIR1)/AUXIN SIGNALING F-BOX (AFB), promoting the degradation of Aux/IAA proteins, releasing auxin response factors (ARFs), and activating the expression of auxin-responsive genes (Gray et al., 2001; Dharmasiri et al., 2005a; Kepinski and Leyser, 2005). Aux/IAA proteins are short-lived, nuclear-localized proteins that play key roles in auxin signal activation and root growth modulation (Rouse et al., 1998). Other hormones and stresses often regulate auxin signaling by affecting Aux/IAA protein stability (Lim and Kunkel, 2004; Nemhauser et al., 2004; Wang et al., 2007; Kushwah and Laxmi, 2014).Nitric oxide (NO) is a signaling molecule with diverse biological functions in plants (He et al., 2004; Fernández-Marcos et al., 2011; Shi et al., 2012), including important roles in the regulation of root growth and development. NO functions downstream of auxin during the adventitious rooting process in cucumber (Cucumis sativus; Pagnussat et al., 2002). Exogenous auxin-induced NO biosynthesis is associated with nitrate reductase activity during lateral root formation, and NO is necessary for auxin-induced lateral root and root hair development (Pagnussat et al., 2002; Lombardo et al., 2006). Pharmacological and genetic analyses in Arabidopsis indicate that NO suppresses primary root growth and root meristem activity (Fernández-Marcos et al., 2011). Additionally, both exogenous application of the NO donor sodium nitroprusside (SNP) and overaccumulation of NO in the mutant chlorophyll a/b binding protein underexpressed1 (cue1)/nitric oxide overproducer1 (nox1) result in reduced PIN1 expression and auxin accumulation in root tips. The auxin receptors protein TIR1 is S-nitrosylated by NO, suggesting that this protein is a direct target of NO in the regulation of root development (Terrile et al., 2012).Because NO is a free radical, NO levels are dynamically regulated by endogenous and environmental cues. Many phytohormones, including abscisic acid, auxin, cytokinin, salicylic acid, jasmonic acid, and ethylene, induce NO biosynthesis (Zottini et al., 2007; Kolbert et al., 2008; Tun et al., 2008; García et al., 2011). In addition, many abiotic and biotic stresses or stimuli, such as cold, heat, salt, drought, heavy metals, and pathogens/elicitors, also stimulate NO biosynthesis (Zhao et al., 2009; Mandal et al., 2012). Salt stress stimulates NO and ONOO accumulation in roots (Corpas et al., 2009), but the contribution of NO to root meristem growth under salinity stress has yet to be examined in detail.In this study, we found that salt stress significantly down-regulated the expression of PIN genes and promoted AUXIN RESISTANT3 (AXR3)/IAA17 stabilization. Furthermore, salt stress stimulated NO accumulation, and pharmacological inhibition of NO biosynthesis compromised the salt-mediated reduction in root meristem size. Our results support a model in which salt stress reduces root meristem size by increasing NO accumulation, which represses PIN expression and stabilizes IAA17, thereby reducing auxin levels and repressing auxin signaling.  相似文献   

12.
Little is known about the influence of subchronic cadmium exposure on apoptosis in the immune organs of birds and the protective effects on apoptosis by selenium against cadmium. The aim of this study was to investigate the effect of subchronic cadmium exposure on nitric oxide and apoptosis in the immune organs of chicken and the protective roles of selenium against cadmium-induced apoptosis. Two hundred ten 30-day-old chickens were randomly assigned to three groups and were fed a basal diet, cadmium?+?selenium (as 150 mg of CdCl2 per kg of diet?+?10 mg of Na2SeO3 per kg of diet ) or cadmium (as 150 mg of CdCl2 per kg of diet) in basic diets for 15, 30, 45, and 60 days. Then, the production of nitric oxide, messenger RNA (mRNA level), and the activity of inducible nitric oxide synthase, ultrastructural changes, TUNEL assay, and flow cytometric analysis of apoptosis and Bcl-2 and p53 mRNA levels in the immune organs were examined. The results showed that cadmium exposure caused ultrastructural damage and increased production of nitric oxide, mRNA level, and activity of inducible nitric oxide synthase, the degree, and the number of apoptotic cells in a time-dependent manner. Cadmium exposure decreased Bcl-2 mRNA level and increased p53 mRNA level in a time-dependent manner. Selenium supplementation during dietary cadmium reduced the production of nitric oxide, the mRNA level, and activity of inducible nitric oxide synthase, ultrastructural damage, and apoptosis in the immune organs of chicken. It indicated that cadmium induced nitric oxide-mediated apoptosis of immune organs, and selenium played protective effects against cadmium-induced apoptosis in the immune organs of chickens.  相似文献   

13.
目的:观察高脂饮食对SD大鼠血脂水平及胸主动脉环舒张功能的影响及姜黄素对以上改变的影响。方法:健康SD大鼠30只,分高脂饮食组(10只)、正常饮食对照组、高脂饮食+姜黄素组(10只),大鼠行适应性饲养1周后分别给予高脂饮食及正常饮食;于实验开始时、10周及实验结束前测各组大鼠体重,20周后取血测定血清血脂浓度,取胸主动脉测定血管环舒张功能。结果:①高脂饮食喂养的大鼠体重明显高于其他各组大鼠,姜黄素可明显对抗高脂饮食导致的体重升高。②与对照组比较,高脂饮食组TC、TG、LDL-C明显升高(P<0.01和P<0.05);③与正常对照组及姜黄素对照组比较,高脂饮食组胸主动脉环的内皮依赖性舒张功能显著减弱(P<0.05)。结论:①SD大鼠给予高脂饮食后使大鼠血脂水平明显升高,胸主动脉环内皮依赖性舒张功能显著减弱。②姜黄素具有防治高脂饮食导致的血脂升高及改善高脂饮食导致的血管内皮依赖性的舒张功能减退。  相似文献   

14.
Bcl—2抑制电离辐射诱发细胞凋亡的线粒体机制探讨   总被引:9,自引:1,他引:9  
低剂量电离辐射能够诱发细胞凋亡的发生,Bcl-2能够抑制多种因素诱发的细胞凋亡,本文报道了Bcl-2基因转染细胞克隆对4GyX-射线诱发细胞凋亡的影响及其与可能的机制。结果表明,高度表达Bcl-2的细胞克隆在72h内明显抑制了4GyX-射线诱发的CHO细胞凋亡,进一步的机制探讨表明,Bcl-2能够维持或恢复受电离辐射损伤而降低的线粒体膜电位水平,结果提示:Bcl-2对低剂量电离辐射诱发的细胞凋亡的  相似文献   

15.
In a previous study, we observed that a cell-free Salmonella typhimurium extract induced suppression of mitogen-induced T-cell proliferation and that this suppression involved non-responsiveness of T-cells to interleukin-2 (IL-2) and augmentation of IL-2 receptor (IL-2R) expression. In this study, we found that inhibition of phytohemagglutinin (PHA)-stimulated murine spleen cell proliferation induced by a cell-free S. typhimurium extract was reversed by treatment with an anti-interferon-γ monoclonal antibody (anti-IFN-γ Ab), but not by interleukin-4 or NG-monomethyl-l -arginine, which is known to inhibit nitric oxide (NO)-secretion from spleen cells in culture. However, IL-2R expression was augmented by treatment with the extract, although this was independent of an NO-mediated mechanism. Only anti-IFN-γ Ab treatment reduced the augmented IL-2R expression to a normal level. These results suggest that the suppression of T-cell proliferation induced by the Salmonella cell-free extract is associated with augmentation of IL-2R expression in an NO production-independent manner.  相似文献   

16.
The effect of graded doses of irradiation (cobalt-60) on the morphology of McCoy cells was analyzed, and 4,000 to 5,000 r was selected as a satisfactory dose for production of giant cells. The susceptibility of radiation-induced giant cells to chlamydial infection was compared with that of nonirradiated cells by using three strains of Chlamydia trachomatis and one of C. psittaci. Monolayers of giant cells were more susceptible than normal McCoy cells as indicated by (i) greater numbers of inclusions (four- to eightfold) per unit area of monolayer, (ii) larger inclusions (fourfold greater in area), (iii) higher infective titers (1 log or more greater) of harvested cells, and (iv) greater ease of promoting a second cycle of growth. Graded doses of irradiation were applied also to mouse fibroblast (L) cells, and a similar increase in susceptibility to chlamydial infection was noted. It is concluded that giant cells produced by irradiation possess advantages over nonirradiated cells in culture for growth of Chlamydia.  相似文献   

17.
Abstract: Exposure of neuronal PC12 cells, differentiated by nerve growth factor, to tumor necrosis factor-α (TNF-α) and bacterial lipopolysaccharide (LPS) resulted in de novo synthesis of inducible nitric oxide synthase (iNOS) mRNA and protein with an increase up to 24 h. Brain NOS expression was unaffected. The induction of iNOS in differntiated PC12 cells was associated with cell death characterized by features of apoptosis, The NOS inhibitors N -monomethylarginine, aminoguanidine, and 2-amino-5,6-dihydro-6-methyl-4 H -1,3-thiazine HCl prevented TNF-α/LPS-induced cell death and DNA fragmentation, suggesting that the TNF-α/LPS-induced cell death is mediated by iNOS-derived NO. This hypothesis is supported by the finding that addition of l -arginine, which serves as a precursor and limiting factor of enzyme-derived NO production, potentiated TNF-α/LPS-induced loss of viability.  相似文献   

18.
19.
Adipose tissue hormone leptin induces endothelium-dependent vasorelaxation mediated by nitric oxide (NO) and endothelium-derived hyperpolarizing factors (EDHF). Previously it has been demonstrated that in short-term obesity the NO-dependent and the EDHF-dependent components of vascular effect of leptin are impaired and up-regulated, respectively. Herein we examined the mechanism of the EDHF-dependent vasodilatory effect of leptin and tested the hypothesis that alterations of acute vascular effects of leptin in obesity are accounted for by chronic hyperleptinemia. The study was performed in 5 groups of rats: (1) control, (2) treated with exogenous leptin for 1 week to induce hyperleptinemia, (3) obese, fed highly-palatable diet for 4 weeks, (4) obese treated with pegylated superactive rat leptin receptor antagonist (PEG-SRLA) for 1 week, (5) fed standard chow and treated with PEG-SRLA. Acute effect of leptin on isometric tension of mesenteric artery segments was measured ex vivo. Leptin relaxed phenylephrine-preconstricted vascular segments in NO- and EDHF-dependent manner. The NO-dependent component was impaired and the EDHF-dependent component was increased in the leptin-treated and obese groups and in the latter group both these effects were abolished by PEG-SRLA. The EDHF-dependent vasodilatory effect of leptin was blocked by either the inhibitor of cystathionine γ-lyase, propargylglycine, or a hydrogen sulfide (H2S) scavenger, bismuth (III) subsalicylate. The results indicate that NO deficiency is compensated by the up-regulation of EDHF in obese rats and both effects are accounted for by chronic hyperleptinemia. The EDHF-dependent component of leptin-induced vasorelaxation is mediated, at least partially, by H2S.  相似文献   

20.
Cellular responsiveness to nitric oxide (NO) is shaped by past history of NO exposure. The mechanisms behind this plasticity were explored using rat platelets in vitro, specifically to determine the relative contributions made by desensitization of NO receptors, which couple to cGMP formation, and by phosphodiesterase-5 (PDE5), which is activated by cGMP and also hydrolyzes it. Repeated delivery of brief NO pulses (50 nm peak) at 1-min intervals resulted in a progressive loss of the associated cGMP responses, which was the combined consequence of receptor desensitization and PDE5 activation, with the former dominating. Delivery of pulses of differing amplitude showed that NO stimulated and desensitized receptors with similar potency (EC50 = 10–20 nm). PDE5 activation was highly sensitive to NO, with a single pulse peaking at 2 nm being sufficient to evoke a 50% loss of response to a subsequent near-maximal NO pulse. However, the activated state of the PDE subsided quickly after removal of NO, the half-time for recovery being 25 s. In contrast, receptor desensitization reverted much more slowly, the half-time being 16 min. Accordingly, with long (20-min) exposures, NO concentrations as low as 600 pm provoked significant desensitization. The results indicate that PDE5 activation and receptor desensitization subserve distinct short term and longer term roles as mediators of plasticity in NO-cGMP signaling. A kinetic model explicitly describing the complex interplay between NO concentration, cGMP synthesis, PDE5 activation, and the resulting cGMP accumulation successfully simulated the present and previous data.Nitric oxide (NO) is an intercellular messenger molecule in most tissues of the body and exerts physiological effects by binding to receptors possessing intrinsic guanylyl cyclase (GC)4 activity. The receptor proteins are known by various names, including the homogenate-based one, soluble guanylyl cyclase, but here we simply call them NO receptors because this terminology is conceptually more informative in a cellular context. Synthesis of cGMP from GTP that follows receptor activation can engage a number of downstream targets, including cGMP-dependent protein kinase, to bring about alterations in cell function, such as smooth muscle relaxation and neural transmission (13).In common with other hormone or transmitter signaling pathways, the sensitivity of the NO-cGMP pathway is subject to short term and long term regulation. Enduring exposure of cells to NO (hours or more) leads to a loss of NO responsiveness that in the cardiovascular system contributes to the clinical problem of tolerance to nitrovasodilator therapy (46). One mechanism here is a gradual loss of the NO receptor mRNA and protein (7, 8). Conversely, a chronic lack of NO leads to supersensitivity that has been attributed to increased NO receptor activity (9, 10).Short term regulatory mechanisms serve to shape acute cellular cGMP responses to NO and may involve NO receptor desensitization, reducing the rate of cGMP formation (11), activation of phosphodiesterases (PDEs) that consume cGMP (12), or combinations of the two (13, 14). These short term mechanisms may also be quite sustained. For example, relatively brief (5 min) exposures of cells to NO can reduce responsiveness to NO an hour later, a phenomenon that correlated with increased activity of PDE5 (15). This PDE isoform, which is inhibited by drugs like sildenafil (Viagra) used to treat erectile dysfunction, contains a non-catalytic cGMP binding site whose occupation stimulates catalytic activity (16, 17). Reciprocally, shortly after removing the endothelial source of NO, blood vessels develop a supersensitivity to NO-induced relaxation, an effect that was speculated to reflect increased NO receptor responsiveness (18).Addressing directly the relative contributions of NO receptors and PDEs to the regulation of NO-cGMP signaling is problematic in complex tissues because it is very difficult to measure their activities accurately. Rat platelets maintained in vitro, on the other hand, have merit as an experimental model for these purposes because they are physiological NO targets, homogenous, and are also extremely small (about 1 μm in diameter), minimizing problems of compartmentation of the signaling proteins and of diffusion delays in access of applied agents to the cell interior. In addition, they exist naturally in suspension, which is ideal for kinetic studies, they have an abundance of NO receptors of just one type (α1β1), and the only detectable PDE that hydrolyzes NO-evoked cGMP signals is PDE5 (13). Exposure of these cells to persistent NO generates only very transient cGMP responses, mostly terminating within 10 s of NO application; this profile has been explained by a combination of receptor desensitization and PDE5 enhancement (13). The questions addressed here are whether or not these adaptations persist beyond the period of NO application to influence subsequent cellular responsiveness and, if so, for how long, and what are their relative contributions to the plasticity? Central to the feasibility of obtaining answers was our recent development of a method for delivering repeated NO pulses of known amplitude and duration (14), allowing controlled conditioning NO exposures to be followed by test exposures after selected time intervals in NO-free solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号