首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two types of presumed synaptic contacts have been recognized by electron microscopy in the synaptic plexus of the median ocellus of the dragonfly. The first type is characterized by an electron-opaque, button-like organelle in the presynaptic cytoplasm, surrounded by a cluster of synaptic vesicles. Two postsynaptic elements are associated with these junctions, which we have termed button synapses. The second synaptic type is characterized by a dense cluster of synaptic vesicles adjacent to the presumed presynaptic membrane. One postsynaptic element is observed at these junctions. The overwhelming majority of synapses seen in the plexus are button synapses. They are found most commonly in the receptor cell axons where they synaptically contact ocellar nerve dendrites and adjacent receptor cell axons. Button synapses are also seen in the ocellar nerve dendrites where they appear to make synapses back onto receptor axon terminals as well as onto adjacent ocellar nerve dendrites. Reciprocal and serial synaptic arrangements between receptor cell axon terminals, and between receptor cell axon terminals and ocellar nerve dendrites are occasionally seen. It is suggested that the lateral and feedback synapses in the median ocellus of the dragonfly play a role in enhancing transients in the postsynaptic responses.  相似文献   

2.
Nigrothalamic neurons were identified into thesubstantia nigra by their retrograde labelling with horseradish peroxidase. Axon terminals that contain glutamate (the excitatory transmitter) were revealed immunocytochemically with an immunogold electron microscopic technique. Ultrastructural parameters (the large and small diameters of axon terminals, area of their profiles, coefficient of form of profiles, large and small diameters of synaptic vesicles) were analyzed in all 240 synapses under study. Synaptic contacts localized on both nigrothalamic and unidentified neurons belonged to three morphologically specific groups. Synapses of the groups I and III, according to classification by Rinvik and Grofova, were characterized by a symmetric type of synaptic contact and contained polymorphic synaptic vesicles. Contacts in group-II synapses were asymmetric, and respective terminals contained round vesicles. Among the studied synapses, 65.8% were classified as group-I contacts, 25.0% belonged to group II, and 9.2% belonged to group III. Glutamate-positive axon terminals formed predominantly group-II synapses; such connections constituted 70% of this group's synapses. Sixty percent of glutamate-positive synapses were localized on the distal dendrites and 23% on the proximal dendrites, while 17% of such synapses were distributed on the somata of nigral neurons. Such a pattern of distribution of glutamate-positive synapses was observed on both nigrothalamic and unidentified nigral neurons. About 7% of glutamate-positive synapses were formed by very large axon terminals containing round synaptic vesicles; yet, the contacts of these terminals were of a symmetric type. Twenty percent of group-I synapses, i.e., synapses considered inhibitory connections, were found to manifest a weak immune reaction to glutamate.Neirofiziologiya/Neurophysiology, Vol. 28, No. 6, pp. 285–295, November–December, 1996.  相似文献   

3.
We chose synaptic terminals of rat rod bipolar cells as a model system to study activity-related changes in the overall morphology and the fine structure of synaptic sites. Using confocal laser scanning microscopy in conjunction with three-dimensional reconstruction and electron microscopy, we examined the effect of light and dark adaptation on axon terminals identified by protein kinase C (PKC) immunoreactivity. Rod bipolar cell axon terminals consisted of 2–3 polymorphic boutons situated close to the ganglion cell layer and a single ovoid swelling located more distally. Both components of the terminal complex showed adaptation-dependent differences in the distribution of PKC immunoreactivity and in their morphology. In light-adapted rod bipolar cell axon terminals, PKC immunoreactivity was homogeneously distributed throughout the cytoplasm, whereas terminals from dark-adapted animals showed PKC immunoreactivity preferentially localised in the submembrane compartment and a reduced staining of the more central cytoplasm. In three-dimensional reconstructions of optical sections and at the ultrastructural level, the shape of light-adapted axon terminals was round and smooth and exhibited more convexly curved synaptic membranes. In contrast, dark-adapted terminals had irregular contours, numerous dimples and a concave synaptic curvature. No spinules of bipolar cell terminals were observed in dark-adapted material. These observations are discussed in the context of activity-related morphological plasticity of central nervous system synapses and of the functions of PKC in the cycle of vesicle fusion and retrieval at the tonically active ribbon synapses of the rod bipolar axon terminal. Received: 9 April 1998 / Accepted: 23 June 1998  相似文献   

4.
Both proopiomelanocortin (POMC) and ghrelin peptides are implicated in the feeding regulation. The synaptic relationships between POMC- and ghrelin-containing neurons in the hypothalamic arcuate nucleus were studied using double-immunostaining methods at the light and electron microscope levels. Many POMC-like immunoreactive axon terminals were found to be apposed to ghrelin-like immunoreactive neurons and also to make synapses with ghrelin-like immunoreactive neuronal perikarya and dendritic processes. Most of the synapses were symmetrical in shape. A small number of synapses made by ghrelin-like immunoreactive axon terminals on POMC-like immunoreactive neurons were also identified. Both the POMC- and ghrelin-like immunoreactive neurons were found to contain large dense granular vesicles. These data suggest that the POMC-producing neurons are modulated via synaptic communication with ghrelin-containing neurons. Moreover, ghrelin-containing neurons may also have a feedback effect on POMC-containing neurons through direct synaptic contacts.  相似文献   

5.
Ultrastructure of the proximal part of the axon in the neurons, identified according to a number of morphological signs as pyramidal, has been studied in the layer III of the cat cerebral hemisphere sensomotor cortex. In sections, tangential to the cortical surface, in the initial axonal segment, a submembranous osmophilic layer and fasciculi of microtubules are revealed. On the initial segment spines are found, they contain cysterns resembling by their structure the spine system of the dendritic spines. Axonal terminals revealed along the axonal distribution are in contact both with the axonal trunk and with the spines. Regarding the initial segment, they are presynaptic, contain oval synaptic vesicles and form symmetric axo-axonal synapses only. In transversal sections axonal terminals are detected, arranging on the surface of the initial segment mostly as single ones, in longitudinal sections they are seen as clusters. Analysing the author's data and those from the literature, a conclusion is made that in intact animals the synaptic contacts at the initial segment of the axon are the only form of axo-axonal synapses in the neocortex.  相似文献   

6.
Morphological relationships between neuropeptide Y- (NPY) like and ghrelin-like immunoreactive neurons in the arcuate nucleus (ARC) were examined using light and electron microscopy techniques. At the light microscope level, both neuron types were found distributed in the ARC and could be observed making contact with each other. Using a preembedding double immunostaining technique, some NPY-immunoreactive axon terminals were observed at the electron microscope level to make synapses on ghrelin-immunoreactive cell bodies and dendrites. While the axo-somatic synapses were mostly symmetric in nature, the axo-dendritic synapses were both symmetric and asymmetric. In contrast, ghrelin-like immunoreactive (ghrelin-LI) axon terminals were found to make synapses on NPY-like immunoreactive (NPY-LI) dendrites although no NPY-like immunoreactive perikarya were identified receiving synapses from ghrelin-LI axon terminals. NPY-like axon terminals were also found making synapses on NPY-like neurons. Axo-axonic synapses were also identified between NPY- and ghrelin-like axon terminals. The present study shows that NPY- and ghrelin-LI neurons could influence each other by synaptic transmission through axo-somatic, axo-dendritic and even axo-axonic synapses, and suggests that they participate in a common effort to regulate the food-intake behavior through complex synaptic relationships.  相似文献   

7.
Orexin/hypocretin has been well demonstrated to excite the serotonergic neurons in the dorsal raphe nucleus (DRN). We studied the morphological relationships between orexin-containing axon terminals and serotonin- as well as orexin-receptor-containing neurons in the dorsal raphe nucleus. Using immunohistochemical techniques at the light microscopic level, orexin A (OXA)-like immunoreactive neuronal fibers in the DRN were found to make close contact with serotonergic neurons, while some of the serotonergic neurons also expressed the orexin 1 receptor (OX1R). At the electron microscopic level, double-immunostaining experiments showed that the orexin A-like immunoreactive fibers were present mostly as axon terminals that made synapses on the serotonin- and orexin 1-receptor-containing neurons. While only axodendritic synapses between orexin A-containing axon terminals and serotonergic neurons were detected, the synapses made by orexin A-containing axon terminals on the orexin 1-receptor-containing neurons were both axodendritic and axosomatic. The present study suggests that excitation effect of orexin A on dorsal raphe serotonergic neurons is via synaptic communication through orexin 1 receptor.  相似文献   

8.
Wang  B.  Gonzalo-Ruiz  A.  Sanz  J.M.  Campbell  G.  Lieberman  A.R. 《Brain Cell Biology》2002,30(5):427-441
The ultrastructural characteristics, distribution and synaptic relationships of identified, glutamate-enriched thalamocortical axon terminals and cell bodies in the retrosplenial granular cortex of adult rats is described and compared with GABA-containing terminals and cell bodies, using postembedding immunogold immunohistochemistry and transmission electron microscopy in animals with injections of cholera toxin- horseradish peroxidase (CT-HRP) into the anterior thalamic nuclei. Anterogradely labelled terminals, identified by semi-crystalline deposits of HRP reaction product, were approximately 1 μm in diameter, contained round, clear synaptic vesicles, and established asymmetric (Gray type I) synaptic contacts with dendritic spines and small dendrites, some containing HRP reaction product, identifying them as dendrites of corticothalamic projection neurons. The highest densities of immunogold particles following glutamate immunostaining were found over such axon terminals and over similar axon terminals devoid of HRP reaction product. In serial sections immunoreacted for GABA, these axon terminals were unlabelled, whereas other axon terminals, establishing symmetric (Gray type II) synapses were heavily labelled. Cell bodies of putative pyramidal neurons, containing retrograde HRP label, were numerous in layers V–VI; some were also present in layers I–III. Most were overlain by high densities of gold particles in glutamate but not in GABA immunoreacted sections. These findings provide evidence that the terminals of projection neurons make synaptic contact with dendrites and dendritic spines in the ipsilateral retrosplenial granular cortex and that their targets include the dendrites of presumptive glutamatergic corticothalamic projection neurons.  相似文献   

9.
In addition to (i) mossy terminals, (ii) Golgi axons, (iii) granule cell dendrites and (iv), occasionally, Golgi cell dendrites, a third axonal profile identified by morphological criteria as the collateral of Purkinje axons, has been found in 2% of all cerebellar glomeruli. These infrequent components of a few glomeruli, however, were never seen in normal cerebellar cortex to establish specialized synaptic contact with glomerular dendrites. Two to four weeks after surgical isolation of the cerebellar cortex, i.e. following the destruction of both efferent and afferent fibres, the number of glomeruli containing (hypertrophic) axonal branches of Purkinje cells has increased to 13% of all surveyed glomeruli. In addition, the Purkinje axon terminals in the mossy fibre-deprived glomeruli were observed to establish numerous Gray II-type synaptic contacts with surrounding granule cell dendrites. It is suggested that the development of heterologous synapses between hypertrophic, or even intact, Purkinje axon collaterals on the one hand and the mossy fibre-vacated granule cell dendrites on the other, is a compensatory, reactive process to the synaptic "desaturation" of granule neurons, which demonstrate a dormant potential of Purkinje cells to form new synaptic contacts in the adult cerebellum.  相似文献   

10.
Nigrothalamic neurons were identified in the reticular part of thesubstantia nigra using labelling by the retrograde axonal transport of horseradish peroxidase. Nine parameters of the synaptic contacts (n=195) were analyzed, including the size and shape of terminals and size and type of synaptic vesicies. Sixty-six percent of axon terminals studied formed symmetric contacts and contained large polymorphic vesicles (group I). Two-thirds of these synapses were located on the distal dendrites, while one-third was distributed on the perikarya and proximal dendrites. Synapses of group II (29% of all synapses analyzed) exhibited asymmetric contacts and contained round agranular vesicles. Among these synapses, 79% were located on the distal dendrites, 19% were located on the proximal dendrites, and only 2% were located on the neuronal perikarya. Axon terminals of group III (5% of total population) exhibited symmetric contact and contained small polymorphic vesicles. High-resolution immunogold EM histochemistry indicated that 63% of the group-I axon terminals were GABA-positive. The majority of synapses on the labelled nigrothalamic neurons (21 contacts of 25) belonged to group I. Among these 21 synapses, 19 were axo-somatic and mostly GABA-positive. Within group II, 30% of synapses showed slightly expressed GABA-positivity.Neirofiziologiya/Neurophysiology, Vol. 27, No. 2, pp. 147–157, March–April, 1995.  相似文献   

11.
Two kinds of axon terminals: fine M-terminals with the diameter up to 2 mkm and large K-terminals with the diameter up to 6 mkm were found in electron microscopic study of the posterior lateral nucleus of the cat's thalamus. M-terminals comprising 88% of the total amount of the axon terminations under analysis are characterized by a great amount of densely packed light round synaptic vesicles and solitary mitochondria. These terminals form asymmetrical type of contacts in which the post-synaptic network is distinguished with a high degree of osmiophilia. The K-terminals contain a few rarely distributed round light synaptic vesicles and many mitochondria which are disposed in the central part of the termination. These terminals form a symmetrical type of synaptic contacts with poorly pronounced active zones in these formations. In axo-axonal contacts between the described kinds of terminals the K-terminals always serve as a presynapse. After extirpation of the sincipital cortex M-terminals underwent degeneration.  相似文献   

12.
The synapse-bearing nerve terminals of the opener muscle of the crayfish Procambarus were reconstructed using electron micrographs of regions which had been serially sectioned. The branching patterns of the terminals of excitatory and inhibitory axons and the locations and sizes of neuromuscular and axo-axonal synapses were studied. Excitatory and inhibitory synapses could be distinguished not only on the basis of differences in synaptic vesicles, but also by a difference in density of pre- and postsynaptic membranes. Synapses of both axons usually had one or more sharply localized presynaptic "dense bodies" around which synaptic vesicles appeared to cluster. Some synapses did not have the dense bodies. These structures may be involved in the physiological activity of the synapse. Excitatory axon terminals had more synapses, and a larger percentage of terminal surface area devoted to synaptic contacts, than inhibitory axon terminals. However, the largest synapses of the inhibitory axon exceeded in surface area those of the excitatory axon. Both axons had many side branches coming from the main terminal; often, the side branches were joined to the main terminal by narrow necks. A greater percentage of surface area was devoted to synapses in side branches than in the main terminal. Only a small fraction of total surface area was devoted to axo-axonal synapses, but these were often located at narrow necks or constrictions of the excitatory axon. This arrangement would result in effective blockage of spike invasion of regions of the terminal distal to the synapse, and would allow relatively few synapses to exert a powerful effect on transmitter release from the excitatory axon. A hypothesis to account for the development of the neuromuscular apparatus is presented, in which it is suggested that production of new synapses is more important than enlargement of old ones as a mechanism for allowing the axon to adjust transmitter output to the functional needs of the muscle.  相似文献   

13.
Guan JL  Wang QP  Hori T  Takenoya F  Kageyama H  Shioda S 《Peptides》2004,25(8):1307-1311
The ultrastructural properties of orexin 1-receptor-like immunoreactive (OX1R-LI) neurons in the dorsal horn of the rat spinal cord were examined using light and electron microscopy techniques. At the light microscopy level, the most heavily immunostained OX1R-LI neurons were found in the ventral horn of the spinal cord, while some immunostained profiles, including nerve fibers and small neurons, were also found in the dorsal horn. At the electron microscopy level, OX1R-LI perikarya were identified containing numerous dense-cored vesicles which were more heavily immunostained than any other organelles. Similar vesicles were also found within the axon terminals of the OX1R-LI neurons. The perikarya and dendrites of some of the OX1R-LI neurons could be seen receiving synapses from immunonegative axon terminals. These synapses were found mostly asymmetric in shape. Occasionally, some OX1R-LI axon terminals were found making synapses on dendrites that were OX1R-LI in some cases and immunonegative in others. The synapses made by OX1R-LI axon terminals were found both asymmetric and symmetric in appearance. The results provide solid morphological evidence that OX1R is transported in the dense-cored vesicles from the perikarya to axon terminals and that OX1R-LI neurons in the dorsal horn of the spinal cord have complex synaptic relationships both with other OX1R-LI neurons as well as other neuron types.  相似文献   

14.
Characterization of orexin A immunoreactivity in the rat area postrema   总被引:1,自引:0,他引:1  
The distribution of orexin A immunoreactivity and the synaptic relationships of orexin A-positive neurons in the rat area postrema were studied using both light and electron microscopy techniques. At the light microscope level, numerous orexin A-like immunoreactive fibers were found within the area postrema. Using electron microscopy, immunoreactivity within fibers was confined primarily to the axon terminals, most of which contained dense-cored vesicles. Both axo-somatic and axo-dendritic synapses made by orexin A-like immunoreactive axon terminals were found, with these synapses being both symmetric and asymmetric in form. Orexin A-like immunoreactive axon terminals could be found presynaptic to two different immunonegative profiles including the perikarya and dendrites. Occasionally, some orexin A-like immunoreactive profiles, most likely to be dendrites, could be seen receiving synaptic inputs from immunonegative or immunopositive axon terminals. The present results suggest that the physiological function of orexin A in the area postrema depends on synaptic relationships with other immunopositive and immunonegative neurons, with the action of orexin A mediated via a self-modulation feedback mechanism.  相似文献   

15.
Synaptic terminals on branches of an excitatory motor axon in a spider crab (Hyas areneas) were examined by electron microscopy to determine whether differences in size, structure, and number of synapses could be correlated with differences in transmitter release. Terminals releasing relatively large amounts of transmitter during low frequencies of nerve impulses ("high-output" terminals) had larger synapses, more prominent presynaptic dense bodies (active zones), and fewer synapses per unit length than terminals releasing relatively small amounts of transmitter ("low-output" terminals). Neither the difference in synaptic area, nor the quantitative differences in the active zones, were sufficient in themselves to explain the difference in synaptic efficacy, and it is postulated that a non-linear relationship may exist between structural features of the synapse and release of transmitter by a nerve impulse, and that differences other than those apparent from the ultrastructure could be involved. Greater facilitation at low-output terminals with high frequencies of nerve impulses may be due to greater reserves of "immediately available" transmitter, and to recruitment or activation of more individual synaptic contacts.  相似文献   

16.
本文应用免疫细胞化学方法在光镜与电镜下观察了大鼠孤束核内脑啡肽样免疫反应(ENK-LI)阳性结构的分布特征和ENK-LI轴突终末的突触联系以及非突触性关系。结果表明:(1)经秋水仙素处理的大鼠,其孤束核内有许多ENK-LI胞体的分布;而未经秋水仙素处理的大鼠,其孤束核内可见密集的ENK-LI纤维与终末;ENK-LI胞体、纤维和终末主要分布于锥体交叉平面至闩平面的孤束核内侧亚核与胶状质亚核。(2)ENK-LI阳性产物主要定位于小圆形清亮囊泡外表面、大颗粒囊泡内和线粒体外表面等处。(3)ENK-LI轴突终末主要与阴性树突形成轴-树突触。(4)阴性轴突终末终止于ENK-LI轴突终末上,形成轴-轴突触。(5)ENK-LI轴突终末与阴性轴突终末形成非突触性的轴-轴并靠。以上结果提示孤束核内的ENK-LI神经成分主要通过突触后机制、也不排除突触前作用,参与孤束核中内脏信息的整合过程,而且这一作用又受到非ENK-LI神经成分的调控。  相似文献   

17.
A study was made of the ultrastructure of the neuro-muscular synapses in the patients with the myasthenic Lambert-Eaton syndrome. Most of the synapses displayed an increased content of synaptic vesicles in the axon terminals, and the anastomosing synaptic folds were increased in number and depth. Local destructive changes were found in the terminals of some synapses. The data obtained confirmed the fact that this syndrome was underlied by disorder of the transmitter release from the presynaptic structures.  相似文献   

18.
Structural plasticity at crustacean neuromuscular synapses   总被引:1,自引:0,他引:1  
Crustacean motor axons innervate muscle fibers via a multiplicity of synaptic terminals which release small but variable amounts of transmitter. Differences in release performance appear to be correlated with the size of synaptic contacts and presynaptic dense bars (active zones). These structural parameters proliferate via sprouting from existing synaptic terminals and relocate to ever more distal sites during development and growth of an identified axon. Moreover, alterations in number of synaptic contacts and active zones occur in adults following stimulation or decentralization, demonstrating structural plasticity of crustacean neuromuscular synapses.  相似文献   

19.
The synaptic vesicle accumulation and subsequent morphological remodeling of axon terminals are characteristic features of presynaptic differentiation of zebrafish olfactory sensory neurons. The synaptic vesicle accumulation and axon terminal remodeling are regulated by protein kinase A and calcineurin signaling, respectively. To investigate upstream signals of presynaptic differentiation, we focused on Ca2+ signaling as Ca2+/calmodulin is required for the activation of both calcineurin and some adenylyl cyclases. We here showed that application of Ca2+/calmodulin inhibitor or olfactory sensory neuron-specific expression of calmodulin inhibitory peptide suppressed both synaptic vesicle accumulation and axon terminal remodeling. Thus, the trigger of presynaptic differentiation could be Ca2+ release from intracellular stores or Ca2+ influx. Application of a phospholipase C inhibitor or olfactory sensory neuron-specific expression of inositol 1,4,5-trisphosphate (IP3) 5-phosphatase suppressed synaptic vesicle accumulation, but not morphological remodeling. In contrast, application of a voltage-gated Ca2+ channel blocker or expression of Kir2.1 inward rectifying potassium channel prevented the morphological remodeling. We also provided evidence that IP3 signaling acted upstream of protein kinase A signaling. Our results suggest that IP3-mediated Ca2+/calmodulin signaling stimulates synaptic vesicle accumulation and subsequent neuronal activity-dependent Ca2+/calmodulin signaling induces the morphological remodeling of axon terminals.  相似文献   

20.
Summary The morphology, axonal arborization and ultrastructure of synaptic connections of the V21 giant neuron in the visceral ganglion of the snail Helix pomatia has been investigated following intracellular labelling with horseradish peroxidase. The V21 neuron establishes several afferent and efferent axo-axonic connections, mainly along the first half of the primary axon. Collaterals of 200–300 m length originate from the primary axon, which shows further arborization, and both afferent and efferent synaptic contacts are formed on these fine axon profiles. Afferent and efferent contacts of the cell occur within very short distances of a few micrometers. On the basis of ultrastructure and vesicle and granule content, several afferent terminals can be distinguished on V21 labelled axon profiles. The majority of these afferent terminals resembles peptidergic-(neurosecretory)-like terminals. This finding supports the possible transmitter role of neuropeptides in the central nervous system of gastropods. Our results are consistent with and provide morphological evidence for recent electrophysiological observations suggesting that, in addition to integrating input, the V21 neuron functions as an interneuron in Helix central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号