首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The role of protein kinase C (PKC) on proliferation of A10 vascular smooth muscle cells (VSMC) was studied by overexpressing specific PKC-βI and -βII isozymes. PKC-βI and -βII are derived from alternative splicing of the exon encoding the carboxy-terminal (C-terminal) 50 or 52 amino acids, respectively. The differential functions of the two isozymes with regard to cell proliferation, DNA synthesis, and the cell cycle were investigated in A10 cells, a clonal cell line of VSMC from rat aorta, and in A10 cells overexpressing PKC-βI and PKC-βII (βI-A10 and βII-A10). PKC levels were increased three- to fourfold in heterogeneous cultures of stably transfected cells. Although doubling time of A10 cells was 36 h, the cell doubling time in βI-A10 cells decreased by 12 h, and, in contrast, the doubling time of βII-A10 cells increased by 12 h compared to A10 cells. The increase of [3H]thymidine (TdR) incorporation was accelerated and increased in βI-A10 cells, but slowed and diminished in βII-A10 cells compared to A10 and control cells transfected with empty vector. Cell cycle analysis of βI-A10 cells showed an acceleration of S phase entry while βII-A10 cells slowed S phase entry. These results suggest that PKC-βI and PKC-βII regulate cell proliferation bidirectionally and that PKC-βI and PKC-βII may have distinct and opposing functions as cell cycle check point mediators during late G1phase and may regulate S phase entry in A10 VSMC.  相似文献   

3.
蛋白激酶C在血小板聚集中的作用   总被引:4,自引:0,他引:4  
利用 ̄(32)P-NaH2PO4标记猪血小板,以蛋白激酶C的40kD底物为蛋白激活的标志.用血小板激动剂在聚集浓度范围内处理血小板,结果表明,除了不能使猪血小板聚集的肾上腺素外,凝血酶等激动剂都使血小板40kD底物蛋白磷酸化明显增加,同时38kD,26kD蛋白质磷酸化也明显增加,且40kD底物磷酸化与血小板聚集有平行增加关系.蛋白激酶C在血小板聚集中可能起着重要的调节作用。  相似文献   

4.
K-Cl cotransport is activated by vasodilators in erythrocytes and vascular smooth muscle cells and its regulation involves putative kinase/phosphatase cascades. N-ethylmaleimide (NEM) activates the system presumably by inhibiting a protein kinase. Nitrovasodilators relax smooth muscle via cGMP-dependent activation of protein kinase G (PKG), a regulator of membrane channels and transporters. We investigated whether PKG regulates K-Cl cotransport activity or mRNA expression in normal, PKG-deficient-vector-only-transfected (PKG-) and PKG-catalytic-domain-transfected (PKG+) rat aortic smooth muscle cells. K-Cl cotransport was calculated as the Cl-dependent Rb influx, and mRNA was determined by semiquantitative RT-PCR. Baseline K-Cl cotransport was higher in PKG+ than in PKG- cells (p <0.01). At 0.5 mM, NEM stimulated K-Cl cotransport by 5-fold in PKG- but not in PKG+ cells. However, NEM was more potent although less effective to activate K-Cl cotransport in normal (passage 1-3) and PKG+ than in PKG- cells. In PKG- cells, [(dihydroindenyl) oxy] alkanoic acid (300 mM) but not furosemide (1 mM) inhibited K-Cl cotransport. Furthermore, no difference in K-Cl cotransport mRNA expression was observed between these cells. In conclusion, this study shows that manipulation of PKG expression in vascular smooth muscle cells affects K-Cl cotransport activity and its activation by NEM.  相似文献   

5.
Depolarization of the vascular smooth muscle cell membrane evokes a rapid (phasic) contractile response followed by a sustained (tonic) contraction. We showed previously that the sustained contraction involves genistein-sensitive tyrosine phosphorylation upstream of the RhoA/Rho-associated kinase (ROK) pathway leading to phosphorylation of MYPT1 (the myosin-targeting subunit of myosin light chain phosphatase (MLCP)) and myosin regulatory light chains (LC20). In this study, we addressed the hypothesis that membrane depolarization elicits activation of the Ca2+-dependent tyrosine kinase Pyk2 (proline-rich tyrosine kinase 2). Pyk2 was identified as the major tyrosine-phosphorylated protein in response to membrane depolarization. The tonic phase of K+-induced contraction was inhibited by the Pyk2 inhibitor sodium salicylate, which abolished the sustained elevation of LC20 phosphorylation. Membrane depolarization induced autophosphorylation (activation) of Pyk2 with a time course that correlated with the sustained contractile response. The Pyk2/focal adhesion kinase (FAK) inhibitor PF-431396 inhibited both phasic and tonic components of the contractile response to K+, Pyk2 autophosphorylation, and LC20 phosphorylation but had no effect on the calyculin A (MLCP inhibitor)-induced contraction. Ionomycin, in the presence of extracellular Ca2+, elicited a slow, sustained contraction and Pyk2 autophosphorylation, which were blocked by pre-treatment with PF-431396. Furthermore, the Ca2+ channel blocker nifedipine inhibited peak and sustained K+-induced force and Pyk2 autophosphorylation. Inhibition of Pyk2 abolished the K+-induced translocation of RhoA to the particulate fraction and the phosphorylation of MYPT1 at Thr-697 and Thr-855. We conclude that depolarization-induced entry of Ca2+ activates Pyk2 upstream of the RhoA/ROK pathway, leading to MYPT1 phosphorylation and MLCP inhibition. The resulting sustained elevation of LC20 phosphorylation then accounts for the tonic contractile response to membrane depolarization.  相似文献   

6.
The present study aimed to characterize the role of protein kinase C (PKC) on the dynamics of tight junction (TJ) opening and closing in the frog urinary bladder. The early events of TJ dynamics were evaluated by the fast Ca++ switch assay (FCSA), which consisted in opening the TJs by removing basolateral Ca++ ([Ca++] bl ), and closing them by returning [Ca++] bl to normal values. Changes in TJ permeability can be reliably gauged through changes of transepithelial electrical conductance (G) determined in the absence of apical Na+. The FCSA allows the appraisal of drugs and procedures acting upon the mechanism controlling the TJs. The time courses of TJ opening and closing in an FCSA were shown to follow single exponential time courses. PKC inhibition by H7 (100 μm) caused a reduction of the rate of junction opening in response to removing [Ca++] bl , without affecting junction closing, indicating that PKC is a key element in the control of TJ opening dynamics in this preparation. H7 at 250 μm almost completely inhibits TJ opening in response to basolateral Ca++ withdrawal. Subsequent H7 removal caused a prompt inhibition release characterized by a sharp G increase which, however, once started cannot be stopped by H7 reintroduction, Ca++ being necessary to allow TJ recovery. A step rise of apical Ca++ concentration ([Ca++] ap ) causes a reduction of the rate of TJ opening in a FCSA, an effect that is believed to be mediated by apical Ca++ entering the open TJs. The specific condition of having Ca++ only in the apical solution and the TJs located midway between the Ca++ source (apical solution) and the Ca++-binding sites presumably located at the zonula adhaerens, might configure a situation in which a control feedback loop is set up. A rise of [Ca++] ap during the phase of G increase in an FCSA causes a transient recovery of G followed by a subsequent escape phase where G increases again. Oscillations of G also appear in response to a rise of apical Ca++. Both escape and oscillations result from the properties of the TJ regulatory feedback loop. In conclusion, the present results indicate that PKC plays a key role in TJ opening in response to extracellular Ca++ withdrawal without major effect on the reverse process. In addition, PKC inhibition by H7 not only prevents TJ opening in response to basolateral Ca++ removal but induces a prompt blockade of TJ oscillations induced by apical Ca++, oscillations which reappear again when H7 is removed. Received: 9 May 2000/Revised: 30 August 2000  相似文献   

7.
8.
In the present study, we examined the effect of vasopressin on the induction of the low-molecular-weight heat shock proteins heat shock protein 27 (HSP27) and αB-crystallin in an aortic smooth muscle cell line, A10 cells. Vasopressin induced a time-dependent accumulation of HSP27 and αB-crystallin. The stimulatory effects of vasopressin were dose-dependent over the range 0.1 nmol/L to 0.1 μmol/L. The EC50values for vasopressin were 2 (HSP27) and 4 nmol/L (αB-crystallin). Vasopressin induced increases in the levels of the mRNAs for HSP27 and αB-crystallin. 12-O-Tetradecanoylphorbol 13-acetate (TPA), a protein kinase C (PKC)-activating phorbol ester, induced an accumulation of HSP27 (EC50, 20 nmol/L) and αB-crystallin (EC50, 2 nmol/L). In contrast, 4α-phorbol 12,13-didecanoate, a non-PKC-activating phorbol ester, had no such effect. Staurosporine and calphostin C, inhibitors of PKC, significantly reduced the vasopressin-induced accumulation of HSP27 and αB-crystallin as well as that induced by TPA. BAPTA/AM and TMB-8, inhibitors of intracellular Ca2+mobilization, significantly reduced the vasopressin-induced accumulation of HSP27 and αB-crystallin. These results strongly suggest that vasopressin stimulates the induction of HSP27 and αB-crystallin via PKC activation in vascular smooth muscle cells and that this effect of vasopressin is dependent on intracellular Ca2+mobilization.  相似文献   

9.
Mechanism of Action of Volatile Anesthetics: Role of Protein Kinase C   总被引:1,自引:0,他引:1  
1. It is not completely clear how volatile anesthetics cause anesthesia, but one possible consequence of their action is to alter presynaptic activity and the release of neurotransmitters due to alterations in intracellular signaling. 2. Protein kinase C (PKC) is a signal transducing enzyme that is an important regulator of multiple physiological processes like neurotransmitter release, ion channel activity, and neurotransmitter receptor desensitization. Thus, PKC is an attractive molecular target for the synaptic action of general anesthetics. 3. However, the effects of these agents on PKC activity are not yet fully understood and there are several contradictory data on the literature regarding the in vitro and in vivo preparations. 4. Here, we will review some evidence for volatile anesthetics effects on neuronal PKC activation.  相似文献   

10.
11.
Endoglin and activin receptor-like kinase 1 are specialized transforming growth factor-beta (TGF-β) superfamily receptors, primarily expressed in endothelial cells. Mutations in the corresponding ENG or ACVRL1 genes lead to hereditary hemorrhagic telangiectasia (HHT1 and HHT2 respectively). To discover proteins interacting with endoglin, ACVRL1 and TGF-β receptor type 2 and involved in TGF-β signaling, we applied LUMIER, a high-throughput mammalian interactome mapping technology. Using stringent criteria, we identified 181 novel unique and shared interactions with ACVRL1, TGF-β receptor type 2, and endoglin, defining potential novel important vascular networks. In particular, the regulatory subunit B-beta of the protein phosphatase PP2A (PPP2R2B) interacted with all three receptors. Interestingly, the PPP2R2B gene lies in an interval in linkage disequilibrium with HHT3, for which the gene remains unidentified. We show that PPP2R2B protein interacts with the ACVRL1/TGFBR2/endoglin complex and recruits PP2A to nitric oxide synthase 3 (NOS3). Endoglin overexpression in endothelial cells inhibits the association of PPP2R2B with NOS3, whereas endoglin-deficient cells show enhanced PP2A-NOS3 interaction and lower levels of endogenous NOS3 Serine 1177 phosphorylation. Our data suggest that endoglin regulates NOS3 activation status by regulating PPP2R2B access to NOS3, and that PPP2R2B might be the HHT3 gene. Furthermore, endoglin and ACVRL1 contribute to several novel networks, including TGF-β dependent and independent ones, critical for vascular function and potentially defective in HHT.Transforming growth factor-β (TGF-β)1 superfamily ligands, including TGF-βs, activins and bone morphogenic proteins (BMPs), regulate several pathways essential for vascular development and function (1). Responses to these ligands are controlled by type I and II serine kinase receptors, coreceptors and signaling SMAD intermediates. Endothelial cells express the coreceptor, endoglin, and the specialized type I receptor, ACVRL1 (activin receptor-like kinase 1 or ALK1); both molecules are critical for regulation of angiogenesis and vasomotor function by TGF-β superfamily ligands (2, 3).Mutations in ENG and ACVRL1 genes lead to hereditary hemorrhagic telangiectasia (HHT), types 1 and 2, respectively (4). HHT affects 1 in 5000–8000 people worldwide and is characterized by arteriovenous malformations (AVMs) in multiple organs, potentially leading to severe hemorrhages and strokes (4). Haploinsufficiency is the underlying cause of HHT, indicating that reduced levels of functional endoglin or ACVRL1 (ALK1) proteins predispose to endothelial dysfunction and AVMs (5). Although the mechanisms responsible for AVMs remain unclear, the elucidation of how members of the TGF-β superfamily and their molecular networks regulate vascular integrity is vital for future treatments of HHT.We have demonstrated that endoglin interacts with endothelial nitric oxide synthase (NOS3 or eNOS) and regulates its activation (2). NOS3 is a Ca+2 and calmodulin-regulated enzyme that produces NO● in response to humoral and mechanical stimuli via dynamic interactions with various allosteric regulators such as heat shock protein 90 (HSP90). NOS3 is also regulated by dynamic changes in its phosphorylation status. For example, effects of the vascular endothelial growth factor (VEGF) on angiogenesis, vascular permeability and vasomotor tone are mediated in part through Akt-dependent phosphorylation of NOS3 Ser1177 and by increased NOS3-HSP90 association (6). Although phosphorylation of NOS3 Ser1177 is indicative of agonist-induced activation, it is preceded by dephosphorylation at Thr495. TGF-β1 and -β3 but not -β2 responses can sensitize NOS3 for activation by inducing dephosphorylation at Thr495, and therefore contribute to NOS3 activation and NO-dependent vasorelaxation (7). Endoglin regulates TGF-β1 and -β3 but not -β2 responses, and is required for their induction of NOS3 Thr495 dephosphorylation (7, 8).In the vascular endothelium of HHT patients and in Eng and Alk1 heterozygous mice, impaired association of NOS3 with HSP90 renders the enzyme uncoupled, causing production of superoxide (●O2) instead of NO● (2, 3, 9) and leading to endothelial damage. Interestingly, TGF-β1 and -β3 do not induce phosphorylation at NOS3 Ser1177, yet NOS3 activation in response to TGF-β1 is abolished in endoglin-deficient cells, impairing vasomotor function (3). ACVRL1 (or ALK1) also interacts with NOS3, and its reduced levels in endothelial cells similarly cause NOS3-derived oxidative stress (3, 9).In view of the crucial roles of endoglin and ACVRL1 in the development and maintenance of the normal vasculature and the definite contribution of their mutated state to HHT, we used the LUMIER high-throughput technology (10) to identify novel protein interactions and molecular networks for these predominantly endothelial receptors. We included TGFBR2 to further define TGF-β protein networks potentially important for vascular function, and attempt to distinguish the TGF-β networks from those associated with BMP9/BMP10 and mediated by ACVRL1 in a complex with BMPR2 and endoglin (11, 12).One of identified proteins interacting with all three receptors was protein phosphatase 2A (PP2A), implicated in multiple pathways. PP2A is a holoenzyme with one structural subunit (PPP2R1A or PPP2R1B) associated with one catalytic subunit (PPP2CA or PPP2CB) and one of 19 regulatory B subunits, the latter conferring specificity to the enzyme by recruiting interacting proteins (13, 14). Of interest, PP2A interacts with NOS3 to regulate Ser1177 phosphorylation and NO● production (15). However, the mechanisms governing recruitment of PP2A to NOS3 and the contribution of TGF-β/BMP receptor complexes are unknown. Recently, the human PPP2R2B gene coding for PPP2R2B protein (also known as PP2A-Bβ regulatory subunit) was mapped to chromosome 5q31-q32, in an interval in linkage disequilibrium with the HHT3 locus (16, 17). We now report that PPP2R2B interacts with the ACVRL1/TGFBR2/endoglin complex and that endoglin governs NOS3 phosphorylation and activation status by hindering PP2A access to NOS3 via the PPP2R2B subunit. Loss of endoglin leads to constitutive reduction in NOS3 phosphorylation and likely to changes in several networks with consequent endothelial dysfunction.  相似文献   

12.
In in vitro experiments, we showed that hydrogen sulfide used in concentrations from 10-6 to 10–3 M caused dose-dependent relaxation of circular preparations of the aorta and mesenterial and renal arteries. With increase in the H2S concentration to 10–2 M, we observed intensification of the relaxing effect only with respect to preparations of mesenterial and renal arteries. Vasorelaxation of walls of the aorta and mesenterial and renal arteries induced by applications of cysteine (10–6 to 10–2 М) was completely inhibited in the presence of propargylglycine. Homocysteine used in relatively high concentrations (10–4 to 10–2 М) caused a decrease in the endothelium-dependent vasorelaxation induced by acetylcholine. The renal and mesenterial arteries demonstrated the maximum sensitivity to homocysteine, while the minimum sensitivity was demonstrated by the aorta. Pre-incubation of the vessels together with L-NAME and indomethacin decreased the vasorelaxing action of hydrogen sulfide, while pre-incubation of the studied vessels with sodium nitroprusside intensified such action.  相似文献   

13.
NO, via its second messenger cGMP, activates protein kinase GI (PKGI) to induce vascular smooth muscle cell relaxation. The mechanisms by which PKGI kinase activity regulates cardiovascular function remain incompletely understood. Therefore, to identify novel protein kinase G substrates in vascular cells, a λ phage coronary artery smooth muscle cell library was constructed and screened for phosphorylation by PKGI. The screen identified steroid-sensitive gene 1 (SSG1), which harbors several predicted PKGI phosphorylation sites. We observed direct and cGMP-regulated interaction between PKGI and SSG1. In cultured vascular smooth muscle cells, both the NO donor S-nitrosocysteine and atrial natriuretic peptide induced SSG1 phosphorylation, and mutation of SSG1 at each of the two predicted PKGI phosphorylation sites completely abolished its basal phosphorylation by PKGI. We detected high SSG1 expression in cardiovascular tissues. Finally, we found that activation of PKGI with cGMP regulated SSG1 intracellular distribution.  相似文献   

14.
15.
We investigated the role of Ca(2+)-dependent protein kinases in the regulation of astrocytic cell volume. Calmodulin (CaM) antagonists were used to inhibit CaM and thus Ca2+/CaM-dependent protein kinase. The effect of these inhibitors as well as activators and inhibitors of protein kinase C (PKC) on astrocytic volume was measured in response to hypoosmotic stress and under isoosmotic conditions. In conditions of hypoosmolarity, CaM antagonists had no effect on swelling, but inhibited the regulatory volume decrease. PKC activation facilitated the swelling induced by hypoosmotic stress. PKC inhibitors induced cell shrinkage and inhibited the initial phase of regulatory volume decrease, whereas PKC down-regulation caused pronounced swelling and partial inhibition of regulatory volume decrease. In isoosmotic conditions, CaM antagonists and PKC activation did not affect astrocytic volume, but PKC inhibitors caused shrinking and PKC down-regulation led to swelling of these cells. These studies indicate the importance of Ca(2+)-dependent protein kinases in the regulation of astrocytic cell volume.  相似文献   

16.
在人肝癌细胞7721中研究了酪氨酸蛋白激酶(TPK)和蛋白激酶C(PKC)的激活剂[分别为表皮生长因子(EGF)和佛波酯(PMA)]和各种蛋白激酶抑制剂对N-乙酰氨基葡萄糖转移酶V(GnT-V)活力的影响,以探讨TPK和PKC对GnT-V的调节。结果发现,EGF或PMA处理细胞48h后,GnT-V的活力明显增高;蛋白激酶的非特异性抑制剂槲皮素和染料木黄酮(genistein)在抑制TPK和PKC的同时,抑制GnT-V的基础活力,并完全阻断EGF或PMA对GnT-V的增高作用;TPK的特异性抑制剂Tyrphostin-25和PKC的特异性抑制剂D-鞘氨醇分别应用时,各自只能部分地取消EGF或PMA对GnT-V的诱导。但当Tyrphostin-25和D-鞘氨醇同时加入培养基中则可完全阻断EGF或PMA对GnT-V的诱导激活。蛋白质合成抑制剂环己亚胺和蛋白激酶抑制剂作用相仿,不但可抑制GnT-V的基础活力,也可完全消除EGF或PMA对GnT-V的激活。以上结果提示EGF或PMA通过蛋白激酶调节GnT-V的酶蛋白合成,并且GnT-V受到膜性TPK和PKC的双重调节,其中m-TPK较m-PKC更为重要。  相似文献   

17.
18.
The liver is the first organ infected by Plasmodium sporozoites during malaria infection. In the infected hepatocytes, sporozoites undergo a complex developmental program to eventually generate hepatic merozoites that are released into the bloodstream in membrane-bound vesicles termed merosomes. Parasites blocked at an early developmental stage inside hepatocytes elicit a protective host immune response, making them attractive targets in the effort to develop a pre-erythrocytic stage vaccine. Here, we generated parasites blocked at a late developmental stage inside hepatocytes by conditionally disrupting the Plasmodium berghei cGMP-dependent protein kinase in sporozoites. Mutant sporozoites are able to invade hepatocytes and undergo intracellular development. However, they remain blocked as late liver stages that do not release merosomes into the medium. These late arrested liver stages induce protection in immunized animals. This suggests that, similar to the well studied early liver stages, late stage liver stages too can confer protection from sporozoite challenge.  相似文献   

19.
20.
The protein kinase C activator, phorbol 12-myristate 13-acetate (PMA), has been found recently to transform cultured astrocytes from flat, polygonal cells into stellate-shaped, process-bearing cells. Studies were conducted to determine the effect of PMA on protein phosphorylation in astrocytes and to compare this pattern of phosphorylation with that elicited by dibutyryl cyclic AMP (dbcAMP), an activator of the cyclic AMP-dependent protein kinase which also affects astrocyte morphology. Exposure to PMA increased the amount of 32P incorporation into several phosphoproteins, including two cytosolic proteins with molecular weights of 30,000 (pI 5.5 and 5.7), an acidic 80,000 molecular weight protein (pI 4.5) present in both the cytosolic and membrane fractions, and two cytoskeletal proteins with molecular weights of 60,000 (pI 5.3) and 55,000 (pI 5.6), identified as vimentin and glial fibrillary acidic protein, respectively. Effects of PMA on protein phosphorylation were not observed in cells depleted of protein kinase C. In contrast to the effect observed with PMA, treatment with dbcAMP decreased the amount of 32P incorporation into the 80,000 protein. Like PMA, treatment with dbcAMP increased the 32P incorporation into the proteins with molecular weights of 60,000, 55,000 and 30,000, although the magnitude of this effect was different. The effect of dbcAMP on protein phosphorylation was still observed in cells depleted of protein kinase C. The results suggest that PMA, via the activation of protein kinase C, can alter the phosphorylation of a number of proteins in astrocytes, and some of these same phosphoproteins are also phosphorylated by the cyclic AMP-dependent mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号