首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Protoplasts of Nicotiana tabacum SRI (streptomycin resistant) and of Nicotiana knightiana (streptomycin sensitive) were fused using polyethylene glycol treatment. From three heterokaryons 500 clones were obtained. From the 43 which were further investigated, 6 resistant, 3 sensitive, and 34 chimeric (consisting of resistant and sensitive sectors) calli were found. From eight clones, a total of 39 plants were regenerated and identified as somatic hybrids. Chloroplast type (N. tabacum = NT or N. knightiana = NK) in the plants was determined on the basis of the species specific EcoRI restriction pattern of the chloroplast DNA. Regenerates contained NT (13 plants) or NK (15 plants) plastids but only the plants with the NT chloroplasts were resistant to streptomycin. This finding and our earlier data on uniparental inheritance points to the chloroplasts as the carriers of the streptomycin resistance factor.  相似文献   

2.
Summary Resistance to streptomycin and lincomycin in plant cell culture is used as a color marker: resistant cells are green whereas sensitive cells are white on the selective medium. Streptomycin and lincomycin at appropriate concentrations do not kill sensitive Nicotiana cells. The selective value of plastid ribosomal DNA mutations, conferring resistance to streptomycin and lincomycin, was investigated by growing heteroplastidic cells on a selective medium. The heteroplastidic cells were obtained by protoplast fusion, and contained a mixed population of streptomycin resistant plastids from the N. tabacum line Nt-SR1-Kan2, and lincomycin resistant plastids from the N. plumbaginifolia line Np-LR400-Hyg1. Clones derived from protoplast fusion were selected by kanamycin and hygromycin resistance, transgenic nuclear markers. Somatic hybrids were then grown on a selective streptomycin or lincomycin medium, or in the absence of either drug to a 50 to 100 mg size callus. Southern analysis of a polymorphic region of plastid DNA (ptDNA) revealed that somatic hybrids grown on streptomycin contained almost exclusively ptDNA from the streptomycin resistant parent, somatic hybrids grown on lincomycin contained almost exclusively ptDNA from the lincomycin resistant parent whereas somatic hybrids grown in the absence of either drug contained mixed parental plastids. Sensitive ptDNA was below detection level in most clones on selective medium, but could be recovered upon subsequent culture in the presence of the appropriate drug. The drugs streptomycin and lincomycin provide a powerful selection pressure that should facilitate recovery of plastid transformants.  相似文献   

3.
Summary Leaf mesophyll protoplasts of a nitrate reductase deficient streptomycin resistant mutant of Nicotiana tabacum were fused with cell suspension protoplasts of wild type Petunia hybrida. Somatic hybrid cell colonies were selected for streptomycin resistance and nitrate reductase proficiency. Six independent cell lines, capable of growth in selection medium, were analysed by electrophoresis of callus peroxidases and leucine aminopeptidases and also by hybridization with rDNA and a chloroplast encoded gene as molecular probes. The results show that all six lines represented nuclear somatic hybrids, possessing the chloroplast of N. tabacum, at an early stage of development. However, after 6–12 months in culture, genomic incompatibility was observed resulting in the loss of most of the tobacco nuclear genome in the majority of the cell lines. One of the latter cell lines regenerated plants which possessed the chloroplast of N. tabacum in a predominantly P. hybrida nuclear background.  相似文献   

4.
Summary Streptomycin-resistant colonies were isolated from protoplast cultures of haploid Nicotiana plumbaginifolia based on their ability to green in medium containing 1 mg/ml streptomycin sulfate. The frequency of resistant colonies was 0.9×10–5 in nonmutagenized culture, and increased ten-fold following treatment of culture with 10 g/ml N-methyl-N-nitro-N-nitrosoguanidine. Of a total of 52 resistant clones isolated, 2 gave rise to haploid, 15 to diploid, and 3 to tetraploid plants upon transfer of calli to differentiation medium. Leaf-segment and protoplast assays showed that all diploid regenerates were resistant to streptomycin but sensitive to chloramphenicol, kanamycin, lincomycin, neomycin, and spectinomycin. Plants in most diploid clones were fertile and able to set seeds when self-fertilized and crossed reciprocally to wild-type plants. Inheritance of streptomycin resistance was studied in the diploid clones and, without exception, the resistance was transmitted maternally. Comparative studies of the ultrastructure of organelles and protein synthesis in isolated chloroplasts between wild-type and resistant clones in the presence of streptomycin suggest that streptomycin resistance is controlled by chloroplasts.  相似文献   

5.
【目的】探讨异烟肼(isoniazid,INH)、链霉素(streptomycin,SM)单耐药结核分枝杆菌(Mycobacterium tuberculosis,MTB)与INH/SM多耐药MTB蛋白质组差异。【方法】应用i TRAQ结合Nano LC-MS/MS定量蛋白质组学技术,分析临床分离INH、SM或INH/SM耐药MTB与H37Rv标准株间均表达差异蛋白;并以INH/SM耐药MTB与H37Rv比值为对照,相对定量分析单耐药与多耐药MTB蛋白表达差异倍数;运用DAVID 6.7分析差异蛋白生物功能;STITCH 5.0分析差异蛋白与INH和SM相互作用。【结果】与H37Rv标准株比较,58个蛋白在INH、SM耐药与INH/SM耐药MTB间均有表达差异,共同差异蛋白生物功能主要为氧化还原酶活性和转移酶活性;主要参与丙酸代谢信号通路。共同差异蛋白中,与INH/SM耐药MTB比较,Rv2986c和Rv1908c在INH、SM耐药MTB均表达上调1.25倍;Rv3133c和Rv0577则均表达下调0.7倍;生物信息学预测发现以上4种蛋白可直接或间接与INH、SM进行相互作用。【结论】INH、SM单耐药和INH/SM多耐药MTB蛋白表达谱有较大差异,蛋白Rv2986c、Rv1908c、Rv3133c和Rv0577表达水平及相互作用可能与INH和SM耐药有关。  相似文献   

6.
Summary The SR180 cell line has been isolated in a callus culture derived from a haploid Nicotiana sylvestris (n = X = 12) plant by its ability to proliferate on a selective medium containing 2,000 g/ml streptomycin sulphate. From the cell line diploid plants have been regenerated. The SR180 selfs are resistant to streptomycin. Streptomycin sensitivity in F1, and a 31 (sensitive to resistant) segregation in F2 indicate that resistance in the SR180 mutant is the result of a recessive Mendelian mutation.  相似文献   

7.
Protoplasts of a kanamycin-resistant (KR, nuclear genome), streptomycin-resistant (SR, chloroplast genome) and chlorophyll-deficient (A1, nuclear genome) Nicotiana tabacum (KR-SA) cell suspension cultures or X-ray-irradiated mesophyll protoplasts of kanamycin- and streptomycin-resistant green plants (KR-SR) were fused with protoplasts of a cytoplasmic male-sterile (CMS) Daucus carota L. cell suspension cultures by electrofusion. Somatic hybrid plants were selected for kanamycin resistance and the ability to produce chlorophyll. Most of the regenerated plants had a normal D. carota morphology. Callus induced from these plants possessed 23–32 chromosomes, a number lower than the combined chromosome number (66) of the parents, and were resistant to kanamycin, but they segregated for streptomycin resistance, which indicated that N. tabacum chloroplasts had been eliminated. Genomic DNA from several regenerated plants was analyzed by Southern hybridization for the presence of the neomycin phosphotransferase gene (NPTII); all of the plants analyzed were found to contain this gene. Mitochondrial (mt) DNA was analyzed by Southern hybridization of restriction endonuclease digests of mtDNA with two DNA probes, PKT5 and coxII. The results showed that the two plants analyzed possessed the mitochondria of D. carota. These results demonstrate that the regenerated plants are interfamilial somatic hybrids.  相似文献   

8.
Antibiotic resistance genes can act as either cell autonomous or non-cell autonomous genetic markers with which to monitor the excision of plant transposons. To convert spectinomycin resistance from a noncell autonomous resistance to cell autonomous resistance, a transit peptide for chloroplast localization from a petunia ribulose bisphosphate carboxylase (rbcS) gene was fused in-frame to the aadA gene, which confers spectinomycin and streptomycin resistance. Constructs were generated in which the expression of this chimeric gene was prevented by the presence, in the 5 untranslated leader, of the maize transposons Activator (Ac) or Dissociation (Ds). When progeny of tobacco or tomato plants transformed with these constructs were germinated on spectinomycin-containing medium, germinally revertant and somatically variegated individuals could be distinguished.  相似文献   

9.
Summary Twenty stable variant lines resistant to isonicotinic acid hydrazide (INH), an inhibitor of the conversion of glycine to serine in the glycolate pathway, were isolated in cell cultures initiated from allodihaploid Nicotiana tabacum. Plants were regenerated from 13 of these lines and explants were tested for resistance. For some lines virtually all of the regenerated plants scored as resistant; for others a mixed population of sensitive and resistant plants were obtained. One or more plants from 5 lines were fertile, presumably as a result of spontaneous diploidization of cells in the plant or culture. Callus initiated from the seed progeny of these plants was resistant to INH confirming the characteristic as a stable mutation. Seedlings from all INH-resistant plants were small and slow-growing, but the slow-growth trait could be separated from resistance in backcrosses of hybrids. In one case (line I21) crosses with sensitive lines show the resistant trait in that line to be dominant.  相似文献   

10.
A number of Solanum nigrum mutants resistant to the antibiotics spectinomycin, streptomycin and lincomycin have been isolated from regenerating leaf strips after mutagenesis with nitroso-methylurea. Selection of streptomycin- and spectinomycin-resistant mutants has been described earlier. Lincomycin-resistant mutants show resistance to higher levels of the antibiotic than used in the initial selection, and in the most resistant mutant (Ll7A1) maternal inheritance of the trait was demonstrated. The lincomycin-resistant mutant L17A1 and a streptomycin plus spectinomycin resistant double mutant (StSpl) were chosen for detailed molecular characterisation. Regions of the plastid DNA, within the genes encoding 16S and 23S rRNA and rps12 (3) were sequenced. For spectinomycin and lincomycin resistance, base changes identical to those in similar Nicotiana mutants were identified. Streptomycin resistance is associated with an A C change at codon 87 of rps 12 (converting a lysine into a glutamine), three codons upstream from a mutation earlier reported for Nicotiana. This site has not previously been implicated in streptomycin resistance mutations of higher plants, but has been found in Escherichia coli. The value of these mutants for studies on plastid genetics is discussed.  相似文献   

11.
The species Solanum surattense Burm.f. has importance in ayurvedic medicine and also as vegetable. Streptomycin-resistant plantlets were induced showing chloroplast encoded mutants in S. surattense from mutagenised (ethyl methane sulphonate and gamma-rays) cotyledon explants. Chloroplast encoded – streptomycin resistant – shoots were developed from green (unbleached) sectors of the cotyledons. The streptomycin-resistant plants were similar to parental plants in morphology and ploidy level (2n=2x=24). Reciprocal crosses between streptomycin-resistant and the original streptomycin sensitive plants have shown the non-Mendelian transmission under the control of chloroplast – DNA. These antibiotic resistant plants are useful in designing biochemical selection schemes aimed at somatic hybrid/cybrid recovery in S. surattense.  相似文献   

12.
Summary The combination in the nuclear genome of a dominant resistance marker (to select against unfused wild-type cells) and a recessive deficiency marker (to select against unfused mutant cells) in a cell line should provide a system for selecting fusion hybrids between the mutant line and any wild-type line. To test this idea, we fused protoplasts from a non-morphogenic cell line of Nicotiana tabacum which was kanamycin resistant (by transformation) and deficient in nitrate reductase (NR-K+) with protoplasts from N. tabacum cv. Petit Havana clone SR1, which provided resistance against streptomycin as an additional selectable marker (NR+K-SR+). Putative hybrids were selected using a culture medium containing no available reduced nitrogen source and 50 mg/l kanamycin sulphate. After regeneration into plants, the hybrid character was demonstrated from: (i) the morphological variation of the regenerants; (ii) the chromosome number; (iii) the ability to grow on medium without a reduced nitrogen source and containing kanamycin sulphate at 50 mg/l; (iv) the presence of nitrate reductase activity; (v) the presence of the gene coding for neomycin phosphotransferase, which provides resistance to kanamycin sulphate; (vi) callus formation from leaves on medium containing 1 g/l streptomycin or 50 mg/l kanamycin sulphate; (vii) F1 plants containing nitrate reductase and the gene for neomycin phosphotransferase. Fusions between the mutant cell line (NR-K+) and three wild-type tobacco species and subsequent cultivation on medium containing no available nitrogen source but 50 mg/l kanamycin sulphate resulted in callus formation with all combinations, while hybrid plants were only regenerated when N. sylvestris was the fusion partner.  相似文献   

13.
Cell-autonomous genes have been used to monitor the excision of both endogenous transposons in maize andAntirrhinum, and transposons introduced into transgenic plants. In tobacco andArabidopsis, the streptomycin phosphotransferase (SPT) gene reveals somatic excision of the maize transposonActivator (Ac) as green sectors on a white background in cotyledons of seedlings germinated in the presence of streptomycin. Cotyledons of tomato seedlings germinated on streptomycin-containing medium do not bleach, suggesting that a different assay for transposon excision in tomato is desirable. We have tested the use of the spectinomycin resistance (SPEC) gene (aadA) and a Basta resistance (BAR) gene (phosphinothricin acetyltransferase, or PAT) for monitoring somatic excision ofAc in tobacco and tomato. Both genetic and molecular studies demonstrate that genotypically variegated individuals that carry clones of cells from whichAc orDs have excised from either SPEC or BAR genes, can be phenotypically completely resistant to the corresponding antibiotic. This demonstrates that these genes act non-cell-autonomously, in contrast to the SPT gene in tobacco. Possible reasons for this difference are discussed.  相似文献   

14.
Summary Previous studies have shown that a chimeric streptomycin phosphotransferase (SPT) gene can function as a dominant marker for plant cell transformation. The SPT marker previously described by Jones and co-workers has a limited value since it conferred a useful level of resistance only to a fraction (10%) of Nicotiana plumbaginifolia transgenic lines. Expression of resistance was species specific: no such resistant transformants were found in N. tabacum. In this paper we describe an improved SPT construct that utilizes a mutant Tn5 SPT gene. The mutant gene, SPT *, encodes a protein with a two amino acid deletion close to its COOH-terminus. In N. tabacum cell culture the efficiency of transformation with the improved streptomycin resistance marker was comparable to kanamycin resistance. When the chimeric SPT * gene was introduced linked to a kanamycin resistance gene, streptomycin resistance was expressed in most of the transgenic N. tabacum lines.  相似文献   

15.
Summary In order to produce a triple mutant, sexual crosses between a chlorophyll-deficient, streptomycin-resistant mutant of Nicotiana tabacum (SA) and a kanamycin-resistant transformant of N. tabacum (KR.) were carried out. From the offspring of this cross, a triple mutant (KR-SA) was selected. In N. tabacum KR-SA, chlorophyll deficiency is due to recessive mutation in the nuclear genome, streptomycin resistance is due to a dominant mutation in the chloroplast genome, and kanamycin resistance is shown to be a dominant nuclear marker. Cell suspension protoplasts of N. tabacum KRSA were fused with callus protoplasts of Solanum melongena by dextran treatment. Somatic hybrid plants were selected for streptomycin resistance and the ability to produce clorophyll in regenerated plants. By using this selection system, green plants were recovered from two colonies. When these green plants were then tested for kanamycin resistance, all analyzed plants carried this trait. In addition, the hybrid nature of these plants was confirmed by investigation of the peroxidase isozyme. The present results show that the use of N. tabacum KR-SA in studies of somatic hybridization makes it possible to select somatic hybrid plants easily and provides information of the N. tabacum genome.Chemical Regulation of Biomechanism, The Institute of Physical and Chemical Research, Wako 351-01, Japan  相似文献   

16.
Cell suspensions derived from immature leaves of the groundnut (Arachis hypogaea L.) were cultured in the presence and absence ofCercosporidium personatum pathotoxic culture filtrates. Cell viability and reactions of cell lines were determined after exposure to various concentrations (25–100%, v/v) of the filtrates. Cell lines have been selected for resistance to the toxin(s) produced byC. personatum. Selected cell lines were used for plant regeneration on regeneration media containingC. personatum culture filtrates. Plant regeneration frequency was found to be low in long-term cultures, whereas it was high in short-term cultures. The selfed progeny of the plants regenerated from the resistant cell lines showed resistance to the pathogen in the field. Six out of 82 plants exhibited enhanced resistance in the R2 generation. The culture filtrate stimulated callus proliferation as well as plant regeneration at lower concentrations, a response that could prove to be very useful for obtaining disease resistant plants throughin vitro selection.  相似文献   

17.
A system has been developed for rapid selection of streptomycin resistant mutants, as adventitious shoots arising from explants of several Solanaceous species. Efficient mutagenesis was achieved by incubating shoot culture-derived leaf strips with 1 or 5 mM nitroso-methylurea, for 90 or 120 min. In Nicotiana tabacum and Lycopersicon peruvianum these treatments resulted in white or variegated adventitious shoots from up to 3.5% of explants placed on medium promoting shoot regeneration. Chlorophyll deficiencies were only observed very rarely in Solanum nigrum. Streptomycin resistant shoots were obtained from leaf explants placed on medium containing 500 mg l-1 streptomycin sulphate, under which conditions explants are bleached and adventitious shoot development suppressed. Green adventitious s shoots appeared at a frequency dependent both on the mutagenic treatment and on the species. The best response was with S. nigrum where >70% of the explants produced streptomycin resistant shoots, most of which retained their resistance on subsequent testing. Maternal inheritance of streptomycin resistance has been confirmed for several N. tabacum and S. nigrum mutants, and there is also evidence for paternal transmission in the latter species. The procedure has been successfully extended to other species, including N. sylvestris and N. plumbaginifolia, and also to obtain spectinomycin resistant mutants.Communicated by R. Hagemann  相似文献   

18.
Petiole protoplasts from in vitro-grown carrot plants are a very good alternative to traditionally obtained protoplasts from suspension cultures. High plating and regeneration efficiencies were obtained in most of the breeding lines that were tested. The embedding of the protoplasts in alginate was crucial for initiating cell division and further development. Several streptomycin resistant and chlorophyll-deficient plant lines were selected for using the petiole protoplast system. Maternally inherited streptomycin resistance was demonstrated by sexual crosses. Protoplast fusion of several chlorophyll-deficient lines did not result in complementation, indicating the cytoplasmic nature of the mutations. Petiole protoplasts were used for direct transformation with plasmid DNA pNUNV containing NPTII as a selectable marker. High transformation frequencies (up to 1%) were obtained after PEG treatment of the protoplasts. Kanamycin resistance was shown to be inherited as a single dominant nuclear trait.  相似文献   

19.
Biochemical characteristics of bi-resistant mutants (resistant to ethambutol plus streptomycin or isoniazid plus streptomycin) of mycobacteria isolated by replica plating fromMycobacterium smegmatis ATCC were compared with those of the drug-susceptible strains. Reduced incorporation of [14C]uracil, [3H]lysine and [14C]acetate into RNA, protein and phospholipids respectively was seen in the resistant mutants. Total phosphorlipids were enhanced in ethambutol plus streptomycin resistant mutant and decreased in isoniazid plus streptomycin resistant mutant. There were similar changes in levels of individual phospholipids. The resistant mutants revealed an accumulation of phospholipids in the cell wall, and a marked decrease of phospholipids in the cell membrane in comparison to the susceptible strain. Several qualitative alterations in the polypeptide profile (with respect to number and molecular weight) of the crude protein extract and of different subcellular compartments were seen in the resistant mutants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号