首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lysyl oxidase purified from bovine aorta can oxidize simple alkyl mono- and diamine substrates yielding the respective aldehyde, H2O2, and ammonia as products. The oxidation of such substrates is limited to approximately 100 catalytic turnovers per enzyme molecule since lysyl oxidase is syncatalytically and irreversibly inactivated in the course of oxidation of these amines. The present study reveals that addition of oxidant scavengers protects significantly against inactivation of lysyl oxidase and that the ammonia product is a reversible competitive inhibitor of amine oxidation. Further, the enzyme becomes covalently labeled by the amine substrate or its enzyme-processed derivative during catalysis. Thus, lysyl oxidase appears subject to multiple modes of catalysis-dependent inhibition or inactivation. Syncatalytic inactivation of lysyl oxidase might represent a means of restricting the activity of this enzyme toward its elastin and collagen substrates in vivo.  相似文献   

2.
Lysyl oxidase catalyzes the final known enzymatic step required for collagen and elastin cross-linking in the biosynthesis of normal mature functional insoluble extracellular matrices. In addition, lysyl oxidase has been identified as a possible tumor suppressor. Lysyl oxidase activity in biological samples is traditionally and most reliably assessed by tritium release end-point assays using radiolabeled collagen or elastin substrates involving laborious vacuum distillation of the released tritiated water. In addition, a less sensitive fluorometric method exists that employs nonpeptidyl amine lysyl oxidase substrates and measures hydrogen peroxide production with horseradish peroxidase coupled to homovanillate oxidation. The present study describes a more sensitive fluorescent assay for lysyl oxidase activity that utilizes 1,5-diaminopentane as substrate, and released hydrogen peroxide is detected using Amplex red in horseradish peroxidase-coupled reactions. This method allows the detection of 40 ng of enzyme per 2 ml assay at 37 degrees C and is 7.5 times more sensitive than the currently available fluorometric assay for enzyme activity. This method eliminates the interference that occurs in some biological samples and can be successfully used to detect lysyl oxidase activity in cell culture experiments.  相似文献   

3.
Lysyl oxidase is a specific amine oxidase that catalyzes the formation of aldehyde cross-link intermediates in collagen and elastin. In this study, lysyl oxidase from embryonic chick cartilage was purified to constant specific activity and a single protein band on sodium dodecyl sulfate acrylamide gel electrophoresis. This band had an apparent molecular weight of 62,000. The eluted protein cross-reacted with inhibiting antisera developed against highly purified lysyl oxidase. The highly purified enzyme was active with both insoluble elastin and embryonic chick skin or bone collagen precipitated as reconstituted, native fibrils. There was low activity with nonhydroxylated collagen, collagen monomers, or native fibrils isolated from lathyritic calvaria. The maximum number of aldehyde intermediates formed per molecule of collagen that became insoluble was two. These results indicate that lysyl oxidase has maximum activity on ordered aggregates of collagen molecules that may be overlapping associations of only a few collagen molecules across. Formation of aldehyde intermediates and cross-links during fibril formation may facilitate the biosynthesis of stable collagen fibrils and contribute to increased fibril tensile strength in vivo.  相似文献   

4.
Aldehyde-deficient non-crosslinked collagen obtained from lathyritic rats and collagen from penicillamine-treated rats, which is not deficient in aldehydes but the crosslinking of which is also inhibited, were implanted into the peritoneal cavity of hypophysectomized rats using the diffusion chamber technique. The enzyme lysyl oxidase which catalyses the aldehyde formation in certain lysyl residues of collagen and elastin was extracted from the skin of hypophysectomized rats. The activity of the enzyme was determined following its incubation with an L-[4,5-3H] lysine-labeled elastin substrate prepared from aortas of 17-day-old chick embryos. The result showed that the aldehyde deficient collagen did not crosslink while in the hypophysectomized animal indicating the lack of active lysyl oxidase in the rats. The enzyme activity in the skin of hypophysectomized animals was markedly reduced as compared with the controls indicating directly the dependance of lysyl oxidase activity on pituitary gland hormones.  相似文献   

5.
Development of a peroxidase-coupled fluorometric assay for lysyl oxidase   总被引:2,自引:0,他引:2  
Lysyl oxidase catalyzes the oxidation of peptidyl lysine in elastin and collagen and also acts upon nonpeptidyl amines, although the enzyme becomes slowly inactivated while processing nonpeptidyl substrates. In spite of this complexity, it has been possible to devise a continuously monitored peroxidase-coupled fluorometric assay for the oxidation of simple amines by lysyl oxidase. In the present study, optimal assay conditions have been explored and found to include assay temperatures of 50 to 60°C, the presence of urea in the assay, and the use of diaminopentane as substrate. Although the assay is subject to interference by contaminating macromolecules in enzyme fractions, a linear assay response to enzyme concentration is obtained with highly purified lysyl oxidase with a limiting sensitivity of 0.3 μg of enzyme per assay.  相似文献   

6.
Lysyl oxidase the enzyme which oxidately deaminates lysine residues in collagen and elastin, was purified from embryonic chick cartialge by employing an affinity column of lathyritic rat skin collagen coupled to Sepharose, followed by separation on DEAE-cellulose. An enzyme preparation was obtained which was pure as shown by polyacrylamide gel electrophoresis. The specific activity was 1800-fold higher than that of the original extract. The pure enzyme utilized both collagen and elastin substrate. Furthermore, the ratios of enzyme activity with elastin substrate versus that with collagen substrate were the same at all stages of purity. Only one protein band was found after polyacrylamide gel electrophoresis of the pure lysyl oxidase in sodium dodecyl sulfate and mercaptoethanol. The molecular weight was estimated to be 28000. It was found that the enzyme contained a large number of cysteine and tyrosine residues. Evidence was obtained for molecular heterogeneity of lysyl oxidase. The enzyme eluted from DEAE-cellulsoe in at least four distinct regions. When the peaks were rechromatographed separately, they eluted at salt concentrations similar to those of the original chromatogram. However, the substrate specificity and the electrophoretic mobility on polyacrylamide gel were the same for all enzyme fractions.  相似文献   

7.
Previous attempts to purify lysyl oxidase have been frustrated by the failure to recover activity during ion exchange or affinity chromatography. We have found that lysyl oxidase from chick cartilage shows marked stability in buffers containing urea and in these solutions can be recovered in high yield from DKAE-cellulose and collagen-derivatized Sepharose. The purified enzyme was active against both collagen and elastin substrates but devoid of monoamine oxidase activity. An absolute requirement for oxygen for activity was found.  相似文献   

8.
Various o- and p-quinones were assessed as oxidants of peptidyl lysine in elastin and collagen substrates in the presence and absence of divalent copper as paradigms of protein-lysine 6-oxidase (lysyl oxidase) which contains both quinone and copper cofactors. Pyrroloquinoline quinone was among the most active in the absence and the most active of the o- and p-quinones tested in the presence of copper. The optimal rate of elastin oxidation occurred at a 2:1 PQQ/Cu(II) ratio while Cu(II) itself oxidized elastin relatively slightly. Elastin oxidation by 2:1 PQQ/Cu(II) required aerobic conditions consistent with oxygen-dependent turnover of this catalytic pair. Dimethylsulfoxide and catalase individually or in combination inhibited elastin oxidation by PQQ/Cu(II) by approx. 50%, suggesting that oxygen free radical species participate in the reaction. Amino-acid analysis of elastin and collagen substrates oxidized by 2:1 PQQ/Cu and then reduced with borohydride revealed that alpha-aminoadipic-delta-semialdehyde and lesser amounts of covalent cross-linkages were generated by this oxidant. In contrast, lysine oxidase produced aldehydes and significantly greater quantities of cross-linkage products, consistent with the known specificity of the enzyme. These data, thus, indicate the potential for free quinones, such as PQQ, particularly when stimulated by appropriate metal ions, to act as adventitious oxidants of lysine side-chains in proteins.  相似文献   

9.
Extracts of bovine ligamentum nuchae have been assayed for lysyl oxidase activity using as substrates soluble elastin and soluble collagen labeled with tritiated lysine. The assays were performed in the presence and absence of sodium oleate. At 0.8 mM, oleate decreased activity with elastin more than 50% and enhanced activity with collagen to approximately 200% that of controls without oleate. The results show that this hydrophobic anion modulates lysyl oxidase specificity in crude extracts and suggests a mechanism for modifying activity in tissues.  相似文献   

10.
Changes in collagen cross-linking and lysyl oxidase by estrogen.   总被引:3,自引:0,他引:3  
Dermal collagen solubility and lysyl oxidase activity of bones were measured in DDD mice of advancing age. Insoluble fractions of the dermal collagen increased more rapidly in females than in males after 5 weeks of age. Activity of the lysyl oxidase extracted from bones was higher in females than in males after 4 weeks of age. After sexual maturation, such sex differences were always observed in skin as well as in bone tissue. In other experimental animals, dermal collagen solubility was markedly decreased by estrogen treatment and lysyl oxidase was remarkably activated by estrogen in both skin and bone. Thus it is clear that estrogen stimulates the enzyme activity and accelerates the maturation of collagen and elastin in extracellular space.  相似文献   

11.
Lysyl oxidase highly purified from calf aorta was found to be a potent chemotactic agent for unstimulated human peripheral blood mononuclear cells, determined in in vitro assays in Boyden chambers. A typical chemotactic bell-shaped curve was observed, with a maximal migratory response of 237% of control occurring at 10−10 M lysyl oxidase. The chemotactic response was prevented by prior heat inactivation of the enzyme, by treatment of the enzyme with β-aminopropionitrile or ethylenediamine, which are active site-directed inhibitors of lysyl oxidase, and by a competing, lysine-containing peptide substrate of lysyl oxidase. The chemoattractant reponse to lysyl oxidases was characterized by both chemokinetic and chemotactic components. These results raise the possibility that extracellular lysyl oxidase may have important roles to play in biology in addition to its established function in the crosslinking of elastin and collagen.  相似文献   

12.
Benzylamine derivatives containing para substituents of differing electronegativity as well as isomers of aminomethylpyridine have been assessed for their substrate and inhibitor potentials toward lysyl oxidase. Substituted benzylamines with increasingly electronegative para substituents had the lowest KI values and thus were the most effective inhibitors of the oxidation of elastin by lysyl oxidase. The kcat values for these compounds as substrates of lysyl oxidase were also reduced with increasingly electronegative para substituents. Both the Dkcat and D(kcat/Km) kinetic isotope effects decreased with increasingly electronegative p-substituents in [alpha, alpha'-2H]benzylamines. In contrast, there was no Dkcat solvent isotope effect with [2H] H2O while the D(kcat/Km) solvent isotope effect tended to increase with increasingly electronegative p-substituents. These results are consistent with the stabilization of an enzyme-generated substrate carbanion and thus the retardation of substrate oxidation by electronegative substituents. Such ground state stabilization thus can result in compounds with increased potential for the inhibition of the oxidation of protein substrates of lysyl oxidase.  相似文献   

13.
Previous studies have pointed towards a cofactor role for pyridoxal 5'-phosphate (PLP) in lysyl oxidase, the enzyme that generates the peptidyl aldehyde precursor to the lysine-derived cross-linkages in elastin and collagen. The nature of a carbonyl moiety in purified bovine aortic lysyl oxidase was explored in the present study. A PLP dinitrophenylhydrazone could not be isolated from lysyl oxidase, although corresponding preparations of aspartate aminotransferase, a PLP-dependent enzyme, yielded this derivative, as revealed by h.p.l.c. Analysis of lysyl oxidase for PLP after reduction of the enzyme by NaBH4, a procedure that converts PLP-protein aldimines into stable 5'-phosphopyridoxyl functions, also proved negative in tests using monoclonal antibody specific for this epitope. Lysyl oxidase was competitively inhibited by phenylhydrazine, and inhibition became irreversible with time at 37 degrees C, displaying a first-order inactivation rate constant of 0.4 min-1 and KI of 1 microM. [14C]Phenylhydrazine was covalently incorporated into the enzyme in a manner that was prevented by prior modification of the enzyme with beta-aminopropionitrile, a specific active-site inhibitor, and which correlated with functional active-site content. The chemical stability of the enzyme-bound phenylhydrazine exceeded that expected of linkages between PLP and proteins. The absorption spectrum of the phenylhydrazine derivative of lysyl oxidase was clearly distinct from that of the phenylhydrazone of PLP. It is concluded that lysyl oxidase contains a carbonyl cofactor that is not identical with PLP and that is bound to the enzyme by a stable chemical bond.  相似文献   

14.
Isonicotinic acid hydrazide (isoniazid) causes a large increase in the salt-solubility of collagen when injected into chick embryos; this change is accompanied by the inactivation of lysyl oxidase (EC 1.4.3.13), the enzyme responsible for initiating cross-link formation in collagen and elastin. In addition, isoniazid markedly decreases the liver content of pyridoxal phosphate. The depletion of pyridoxal phosphate takes approx. 6 h, whereas the inhibition of lysyl oxidase and the increase in collagen solubility occur more slowly. A reversal of these effects of isoniazid can be produced by the subsequent injection of a stoichiometric amount of pyridoxal, supporting the role of pyridoxal as a cofactor for lysyl oxidase. Treatment of chick embryos with beta-aminopropionitrile, an irreversible inhibitor of lysyl oxidase, causes an inhibition of the enzyme, which begins to recover within 24 h but which is not affected by the administration of pyridoxal; with isoniazid inhibition, however, lysyl oxidase activity does not show any sign of recovery by 48 h. It is proposed that isoniazid may cause the inhibition of lysyl oxidase by competing for its obligatory cofactor, pyridoxal phosphate. The potential clinical implications in the therapeutic control of fibrosis are briefly discussed.  相似文献   

15.
Lysyl oxidase activity against both collagen and elastin substrates has been examined in the culture medium of skin fibroblasts derived from unrelated patients with Menkes' syndrome and from control subjects. The medium of three Menkes' fibroblast lines showed 3--30% of the activity present in the medium of control fibroblasts, against a purified collagen substrate. Lysyl oxidase activity in the culture medium of two of the Menkes' fibroblast lines was also examined by using a crude aortic-elastin substrate and was similarly decreased in comparison with that in the medium of control fibroblasts. Lysyl oxidase activity in the medium of a fourth fibroblast line, derived from a foetus with Menkes' syndrome, was 42% of that in the medium of control fibroblasts derived from a 1-day-old baby against a collagen substrate, and 26% of that in control fibroblast medium against an elastin substrate. The copper content of the cell layers of the Menkes' fibroblast cultures was elevated in comparison with normal fibroblast cultures, as has previously been reported to be characteristic of such cells. It is suggested that the decrease in lysyl oxidase activity would help to explain the connective tissue defects observed in Menkes' syndrome, and that this reduction, in conjunction with the elevated concentrations of cellular copper, would support the hypothesis that a functional intracellular copper deficiency exists in Menkes' syndrome.  相似文献   

16.
Differentiation of phenotypically normal osteoblast cultures leads to formation of a bone-like extracellular matrix in vitro. Maximum collagen synthesis occurs early in the life of these cultures, whereas insoluble collagen deposition occurs later and is accompanied by a diminished rate of collagen synthesis. The mechanisms that control collagen deposition seem likely to include regulation of extracellular collagen biosynthetic enzymes, but expression patterns of these enzymes in differentiating osteoblasts has received little attention. The present study determined the regulation of lysyl oxidase as a function of differentiation of phenotypically normal murine MC3T3-E1 cells at the level of RNA and protein expression and enzyme activity. In addition, the regulation of BMP-1/mTLD mRNA levels that encodes procollagen C-proteinases was assayed. The role of lysyl oxidase in controlling insoluble collagen accumulation was further investigated in inhibition studies utilizing beta-aminopropionitrile, a specific inhibitor of lysyl oxidase enzyme activity. Results indicate that lysyl oxidase is regulated as a function of differentiation of MC3T3-E1 cells, and that the maximum increase in lysyl oxidase activity precedes the most efficient phase of insoluble collagen accumulation. By contrast BMP-1/mTLD is more constitutively expressed. Inhibition of lysyl oxidase in these cultures increases the accumulation of abnormal collagen fibrils, as determined by solubility studies and by electron microscopy. Taken together, these data support that regulation of lysyl oxidase activity plays a key role in the control of collagen deposition by osteoblast cultures.  相似文献   

17.
Repeat polypeptide models of elastin as substrates for lysyl oxidase   总被引:2,自引:0,他引:2  
Synthetic repeat polypeptides analogous in sequence to the valine-rich regions of elastin have been tested as substrates for purified bovine aorta lysyl oxidase. These polypeptides, HCO(phi-Pro-Gly-Gly)n-Val-OMe, HCO(Val-Pro-Gly-phi-Gly)n-Val-OMe, and HCO-Val-(Ala-Pro-Gly-phi-Gly-Val)n-OMe, where phi = Val or Lys at approximately a 4:1 ratio and where n greater than or equal to 40, are models of the tetra-, penta-, or hexapeptide repeat sequences found in elastin. alpha-Aminoadipic delta-semialdehyde is generated in each of these upon incubation with lysyl oxidase at 37 degrees C, whereas the aldol and anhydrolysinonorleucine bifunctional cross-linkages were formed only in the incubation of enzyme with polypentapeptide. Incubation of the polypentapeptide at 55 degrees C, which enhances coacervation of the peptide, increases aldehyde formation and generates a much higher ratio of cross-linkages to aldehyde than occurred at 37 degrees C. These results demonstrate that lysyl oxidase can oxidize lysine in synthetic polypeptides and suggest important conformational aspects of lysyl oxidase substrates which may control substrate potential as well as the ability of peptidyl aldehyde, once formed by the enzyme, to condense to cross-linkage products.  相似文献   

18.
Lysyl oxidase is an extracellular enzyme that controls the maturation of collagen and elastin. Lysyl oxidase and collagen III often show similar expression patterns in fibrotic tissues. Therefore, we investigated the influence of lysyl oxidase overexpression on the promoter activity of human COL3A1 gene. Our results showed that when COS-7 cells overexpressed the mature form of lysyl oxidase, the activity of the human COL3A1 promoter was increased up to an average of 12 times when tested by luciferase reporter assay. The effect was specific, because other promoters were not affected. Moreover, lysyl oxidase effect was abolished by beta-aminopropionitrile, a specific inhibitor of its catalytic activity. Electrophoretic mobility shift assay showed a binding activity in the region from -101 to -77 that was significantly increased by lysyl oxidase overexpression. The binding was specifically competed by the cold probe, and the mutagenesis of this region abolished both the binding activity in gel retardation and lysyl oxidase stimulation of COL3A1 promoter in transfection experiments. We identified the binding activity as Ku antigen in its two components: Ku80 and Ku70. This study suggests a new coordinated mechanism by which lysyl oxidase might control the development of fibrosis.  相似文献   

19.
The pH-dependent kinetics of lysyl oxidase catalysis was examined for evidence of an ionizable enzyme residue which might function as a general base catalyzing proton abstraction previously shown to be a component of the mechanism of substrate processing by this enzyme. Plots of log Vmax/Km for the oxidation of n-hexylamine versus pH yielded pKa values of 7.0 +/- 0.1 and 10.4 +/- 0.1. The higher pKa varied with different substrates, reflecting ionization of the substrate amino group. A van't Hoff plot of the temperature dependence of the lower pKa yielded a value of 6.1 kcal mol-1 for the enthalpy of ionization. This value as well as the pKa of 7.0 are consistent with those of histidine residues previously implicated as general base catalysts in enzymes. Incubation of lysyl oxidase with low concentrations of diethyl pyrocarbonate, a histidine-selective reagent, at 22 degrees C and pH 7.0 irreversibly inhibited enzyme activity by a pseudo first-order kinetic process. The inactivation of lysyl oxidase correlated with spectral and pH-dependent kinetic evidence for the chemical modification of 1 histidine residue/mol of enzyme, the pKa of which was 6.9 +/- 0.1, within experimental error of that seen in the plot of log Vmax/Km versus pH. Enzyme activity was restored by incubation of the modified enzyme with hydroxylamine, consistent with the ability of this nucleophile to displace the carbethoxy group from N-carbethoxyhistidine. The presence of the n-hexylamine substrate largely protected against enzyme inactivation by diethyl pyrocarbonate. These results thus indicate a functional role for histidine in lysyl oxidase catalysis consistent with that of a general base in proton abstraction.  相似文献   

20.
The localization of lysyl oxidase was examined in calf and rat aortic connective tissue at the ultrastructural level using polyclonal chicken anti-lysyl oxidase and gold conjugated rabbit anti-chicken immunoglobulin G to identify immunoreactive sites. Electron microscopy of calf aortic specimens revealed discrete gold deposits at the interface between extracellular bundles of amorphous elastin and the microfibrils circumferentially surrounding these bundles. The antibody did not react with microfibrils which were distant from the interface with elastin. There was negligible deposition of gold within the bundles of amorphous elastin and those few deposits seen at these sites appeared to be associated with strands of microfibrils. Lysyl oxidase was similarly localized in newborn rat aorta at the interface between microfibrils and nascent elastin fibers. Gold deposits were not seen in association with extracellular collagen fibers even after collagen-associated proteoglycans had been degraded by chondroitinase ABC. However, the antibody did recognize collagen-bound lysyl oxidase in collagen fibers prepared from purified collagen to which the enzyme had been added in vitro. No reaction product was seen if the anti-lysyl oxidase was preadsorbed with purified lysyl oxidase illustrating the specificity of the antibody probe. The present results are consistent with a model of elastogenesis predicting the radial growth of the elastin fiber by the deposition and crosslinking of tropoelastin units at the fiber-microfibril interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号