首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Activation of aryl hydrocarbon receptor (AhR) by 30 polycyclic aromatic hydrocarbons (PAHs) was determined in the chemical-activated luciferase expression (CALUX) assay, using two exposure times (6 and 24h), in order to reflect the metabolization of PAHs. AhR-inducing potencies of PAHs were expressed as induction equivalency factors (IEFs) relative to benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In 24h exposure assay, the highest IEFs were found for benzo[k]fluoranthene, dibenzo[a,h]anthracene and dibenzo[a,k]fluoranthene (approximately three orders of magnitude lower than TCDD) followed by dibenzo[a,j]anthracene, benzo[j]fluoranthene, indeno[1,2,3-cd]pyrene, and naphtho[2,3-a]pyrene. The 6h exposure to PAHs led to a significantly higher AhR-mediated activity than the 24h exposure (generally by two orders of magnitude), probably due to the high rate of PAH metabolism. The strongest AhR inducers showed IEFs approaching that of TCDD. Several PAHs, including some strong mutagens, such as dibenzo[a,l]pyrene, cyclopenta[cd]pyrene, and benzo[a]perylene, elicited only partial agonist activity. Calculation of IEFs based on EC25 values and/or 6h exposure data is suggested as an alternative approach to estimation of toxic potencies of PAHs with high metabolic rates and/or the weak AhR agonists. The IEFs, together with the recently reported relative mutagenic potencies of PAHs [Mutat. Res. 371 (1996) 123; Mutat. Res. 446 (1999) 1] were combined with data on concentrations of PAHs in extracts of model environmental samples (river sediments) to calculate AhR-mediated induction equivalents and mutagenic equivalents. The highest AhR-mediated induction equivalents were found for benzo[k]fluoranthene and benzo[j]fluoranthene, followed by indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene, benzo[a]pyrene, dibenzo[a,j]anthracene, chrysene, and benzo[b]fluoranthene. High mutagenic equivalents in the river sediments were found for benzo[a]pyrene, dibenzo[a,e]pyrene, and naphtho[2,3-a]pyrene and to a lesser extent also for benzo[a]anthracene, benzo[b]fluoranthene, indeno[1,2,3-cd]pyrene, benzo[j]fluoranthene, dibenzo[a,e]fluoranthene and dibenzo[a,i]pyrene. These data illustrate that AhR-mediated activity of PAHs, including the highly mutagenic compounds, occurring in the environment but not routinely monitored, could significantly contribute to their adverse effects.  相似文献   

2.
Yan J  Wang L  Fu PP  Yu H 《Mutation research》2004,557(1):99-108
The photomutagenicity of 16 polycyclic aromatic hydrocarbons (PAHs), all on the United States Environmental Protection Agency (US EPA) priority pollutant list, was studied. Concomitant exposing the Salmonella typhimurium bacteria strain TA102 to one of the PAHs and light (1.1 J/cm2 UVA+2.1 J/cm2 visible) without the activation enzyme S9, strong photomutagenic response is observed for anthracene, benz[a]anthracene, benzo[ghi]perylene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, and pyrene. Under the same conditions, acenaphthene, acenaphthylene, benzo[k]fluoranthene, chrysene, and fluorene are weakly photomutagenic. Benzo[b]fluoranthene, fluoranthene, naphthalene, phenanthrene, and dibenz[a,h]anthracene are not photomutagenic. These results indicate that PAHs can be activated by light and become mutagenic in Salmonella TA102 bacteria. At the same time, the mutagenicity for all the 16 PAHs was examined with the standard mutagenicity test with 10% S9 as the activation system. Benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, acenaphthylene, and fluorene are weakly mutagenic, while the rest of the PAHs are not. In general, the photomutagenicity of PAHs in TA102 does not correlate with their S9-activated mutagenicity in either TA102 or TA98/TA100 since they involve different activation mechanisms.  相似文献   

3.
18 polycyclic aromatic hydrocarbons (PAHs) and 7 quinones were tested for mutagenicity using Salmonella typhimurium TA97, TA98 and TA100 with or without metabolic activation. In the presence of metabolic activation, TA97 was more susceptible to mutation than either TA98 or TA100 by many of PAHs tested. PAHs such as 1-methylphenanthrene, fluoranthene, pyrene, benzo[a]pyrene, benzo[e]pyrene and perylene had high mutagenic effects on TA97 in the presence of metabolic activation. 1,6- and 1,8-pyrenequinones were also highly mutagenic on TA97 in the presence or absence of metabolic activation. It appears that pyrene is mutagenic through its metabolic conversion to pyrenequinones.  相似文献   

4.
Smoke condensates of woods used for food preservation and aromatization in Nigeria were tested for mutagenic activity using Salmonella typhimurium TA98 and TA100. The woods were: white mangrove (Avicennia nitida), red mangrove (Rhizophora racemosa), mahogany Khaya sp.), abura (Mitragyna ciliata), alstonia (Alstonia boonei) and black afara (Terminalia ivorensis). Cigarette tar was tested for comparison. The condensates induced dose-dependent increases in the number of His+ revertants mainly with S9 mix. With the exception of mahogany and cigarette smoke condensate, the smoke condensates induced more revertants/microgram condensate in TA100 than in TA98. The number of revertants/microgram condensate ranged between 0.04 and 0.9 for the wood smoke condensates and was 0.12 for the cigarette smoke in TA100. The range was between 0.1 and 0.30 for the wood smoke condensates and 0.18 revertants/microgram condensate for cigarette smoke condensate in TA98. Concentrations of 7 polycyclic aromatic hydrocarbons (PAHs) in the condensates were determined namely, pyrene, benzo[a]pyrene, benz[a]anthracene, benzo[k]fluoranthene, benzo[b]chrysene, benzo[g,h,i]perylene and dibenzo[a,e]pyrene. The condensates contained varying concentrations of the individual PAHs and those with higher concentrations generally showed greater mutagenic activities. However, the order of mutagenic potency in the bacterial strains differed from the order of PAH concentrations, which were lower than the concentrations at which they are reported to induce mutations. When 6 of the PAHs were mixed in the concentrations in which they were found in the individual condensates, the mixtures did not induce mutation so that the contribution of the PAHs to the mutagenic activities of the condensates could not be determined.  相似文献   

5.
The bipotent liver progenitor cells, so called oval cells, may participate at the early stages of hepatocarcinogenesis induced by chemical carcinogens. Unlike in mature parenchymal cells, little is known about formation of DNA adducts and other genotoxic events in oval cells. In the present study, we employed spontaneously immortalized rat liver WB-F344 cell line, which is an established in vitro model of oval cells, in order to study genotoxic effects of selected carcinogenic polycyclic aromatic hydrocarbons (PAHs). With exception of dibenzo[a,l]pyrene, and partly also benzo[g]chrysene and benz[a]anthracene, all other PAHs under the study induced high levels of CYP1A1 and CYP1B1 mRNA. In contrast, we observed distinct genotoxic and cytotoxic potencies of PAHs. Dibenzo[a,l]pyrene, and to a lesser extent also benzo[a]pyrene, benzo[g]chrysene and dibenzo[a,e]pyrene, formed high levels of DNA adducts. This was accompanied with accumulation of Ser-15 phosphorylated form of p53 protein and induction of apoptosis. Contrary to that, benz[a]anthracene, chrysene, benzo[b]fluoranthene and dibenzo[a,h]anthracene induced only low amounts of DNA adducts formation and minimal apoptosis, without exerting significant effects on p53 phosphorylation. Finally, we studied effects of 2,4,3',5'-tetramethoxystilbene and fluoranthene, inhibitors of CYP1B1 activity, which plays a central role in metabolic activation of dibenzo[a,l]pyrene. In a dose-dependent manner, both compounds inhibited apoptosis induced by dibenzo[a,l]pyrene, suggesting that it interferes with the metabolic activation of the latter one. The present data show that in model cell line sharing phenotypic properties with oval cells, PAHs can be efficiently metabolized to form ultimate genotoxic metabolites. Liver progenitor cells could be thus susceptible to this type of genotoxic insult, which makes WB-F344 cell line a useful tool for studies of genotoxic effects of organic contaminants in liver cells. Our results also suggest that, unlike in mature hepatocytes, CYP1B1 might be a primary enzyme responsible for formation of DNA adducts in liver progenitor cells.  相似文献   

6.
Genotoxicity of polycyclic aromatic hydrocarbons in Escherichia coli PQ37.   总被引:2,自引:0,他引:2  
In the present investigation, 32 polycyclic aromatic hydrocarbons (PAHs) were tested for genotoxicity in E. coli PQ37 using the standard tube assay of the SOS chromotest. PAHs such as benzo[ghi]fluoranthene, benzo[j]fluoranthene, benzo[a]pyrene, chrysene, dibenzo[a,l]pyrene, fluoranthene and triphenylene exhibited high genotoxicity when incubated in the presence of an exogenous metabolic activation mixture. The results were compared to those obtained with the Salmonella/microsome test.  相似文献   

7.
《Process Biochemistry》2014,49(10):1723-1732
The removal and transformation of seven high molecular weight polycyclic aromatic hydrocarbons (PAHs), namely benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, indeno[1,2,3-c,d]pyrene and benzo[g,h,i]perylene, by a freshwater microalga Selenastrum capricornutum under gold and white light irradiation was studied. The two light sources did not result in significant differences in the biodegradation of the selected PAHs in live algal cells, but white light was more effective in promoting photodegradation than was gold light in dead cells. The removal efficiency of seven PAHs, as well as the difference between live and dead microalgal cells, was PAH compound-dependent. Benz[a]anthracene and benzo[a]pyrene were highly transformed in live and dead algal cells, and dead cells displayed greater transformation levels than live cells. Further investigation comparing the transformation of single PAH compound, benzo[a]pyrene, by S. capricornutum and another green microalgal species, Chlorella sp., demonstrated that the transformation in dead cells was similar, indicating the process was algal-species independent. Dead algal cells most likely acted as a photosensitizer and accelerated the photodegradation of PAHs.  相似文献   

8.
A number of polycyclic aromatic sulfur heterocycles have been identified in coal-derived products and in shale oils. The mutagenic activity of some of these compounds, including dibenzothiophene, benzo[b]naphtho[1,2-d]thiophene, benzo[b]naphtho[2,1-d]thiophene and benzo[b]naphtho[2,3-d]thiophene have been determined using the Salmonella/microsome mutagenicity test. These compounds demonstrated either very weak or no mutagenic activity. The methyl derivatives of each of these four compounds were assayed for mutagenic activity. Salmonella typhimurium TA98 was used as the tester strain. All assays required a rat-liver homogenate metabolic activator. Five of the methylated derivatives, 1-methylbenzo[b]naphtho[1,2-d]thiophene, 3-methylbenzo[b]naphtho[1,2-d]thiophene, 1-methylbenzo[b]-naphtho[2,1-d]thiophene, 6-methylbenzo[b]naphtho[2,1-d]thiophene and 4-methylbenzo[b]naphtho[2,3-d]thiophene demonstrated mutagenic activity. However, activity was observed only at high concentrations of the metabolic activator.  相似文献   

9.
A number of highly toxic environmental pollutants including certain polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated dibenzofurans (PCDF), and 'dioxin-like' polychlorinated biphenyls (PCB) are among the most potent agonists of the aryl hydrocarbon receptor (AHR). Induction of cytochrome P4501A1 (CYP1A1) in mammalian cell culture is widely used as a functional parameter for AHR activation providing an estimate for 'dioxin-like' inducing equivalents in extracts from environmental samples. Since a number of polycyclic aromatic hydrocarbons (PAHs) also act as AHR-agonists, the CYP1A1-inducing potencies, measured as induction of 7-ethoxyresorufin O-deethylase (EROD) activity in rat hepatocyte cultures were analyzed for 16 PAHs frequently present in environmental samples. Among these, seven PAHs including benzo[a]pyrene were relatively potent inducers allowing the determination of Induction Equivalency Factors (IEF). For three PAHs including benzo[k]fluoranthene which acted as weak inducers, IEFs were estimated, while six PAHs including acenaphthylene were classified as inactive. Based on different efficacies the concentration-response characteristics of CYP1A1 induction were analyzed in more detail for benzo[a]pyrene, benzo[k]fluoranthene, and acenaphthylene. Benzo[k]fluoranthene was markedly less effective than benzo[a]pyrene as inducer of EROD activity but even more effective than benzo[a]pyrene as inducer of CYP1A1 protein and mRNA. Acenaphthylene was highly more effective on the level of mRNA than on the levels of protein or EROD activity. Further analysis revealed that the low efficacy of acenaphthylene as inducer of CYP1A1 protein and EROD activity is due to its marked cytotoxicity while no clear-cut explanation was found for the differences in efficacy between benzo[k]fluoranthene and benzo[a]pyrene. The EROD-inducing potency of a mixture of 16 PAH was about 2-fold higher than that calculated on the basis of IEFs of the individual constituents of the mixture.  相似文献   

10.
6 polycyclic aromatic hydrocarbons were assayed for mutagenicity in the Ames test, in the presence of hepatic post-mitochondrial preparations isolated from the mouse, rat, hamster, pig and man. Benzo[a]pyrene, dibenzo[a,i]pyrene and benz[a]anthracene gave a positive mutagenic response only in the presence of activation systems derived from the hamster. With the exception of the pig, activation systems derived from all animal species could convert 3-methylcholanthrene to mutagens, the hamster being the most efficient. With the exception of the rat and pig, all animal species activated 7,12-dimethylbenz[a]-anthracene to mutagens, the human preparation being the most effective followed by the hamster and mouse. Dibenz[a,h]anthracene was not activated by any of the hepatic preparations. It is concluded that, among the animal species studied the hamster is generally the most efficient in activating polycyclic aromatic hydrocarbons to mutagens in the Ames test.  相似文献   

11.
Stability studies were performed on the mono-oxygenase system involved, in particular, in the activation of polynuclear aromatic hydrocarbons (PAHs) present in rat-liver preparations used in the Ames mutagenicity test. The results indicated a good stability of the spectral response of the cytochrome-P-450 system, but a much lower stability of its enzymatic activities measured with various substrates, thus showing the inadequacy of the spectral response to characterize the PAH mono-oxygenase activity of the preparations. Epoxide hydrolase activity was found to be stable. Various mono-oxygenase activities were measured in preparations induced with phenobarbital, 3-methylcholanthrene or Aroclor 1254. The activities of two enzymes, benzo[a]pyrene hydroxylase and ethoxyresorufin-O-dealkylase, were found suitable to characterize the capacity of the preparations to metabolize PAH to mutagens. The efficiency of the same preparations to promote the mutagenicity of benzo[a]pyrene and aflatoxin B1 in the Ames test was determined. There was an excellent general correlation between the efficiencies for mutagenic activation of the preparations and the two enzymatic activities mentioned above. Determination of ethoxyresorufin-O-dealkylase (or benzo[a]pyrene hydroxylase) and benzo[a]pyrene 4,5-oxide hydrolase activities is proposed for characterizing the rat-liver preparations used in the Ames test.  相似文献   

12.
The white-rot fungus Pleurotus ostreatus was able to degrade the polycyclic aromatic hydrocarbons (PAHs) benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, and benzo[ghi]perylene in nonsterile soil both in the presence and in the absence of cadmium and mercury. During 15 weeks of incubation, recovery of individual compounds was 16 to 69% in soil without additional metal. While soil microflora contributed mostly to degradation of pyrene (82%) and benzo[a]anthracene (41%), the fungus enhanced the disappearance of less-soluble polycyclic aromatic compounds containing five or six aromatic rings. Although the heavy metals in the soil affected the activity of ligninolytic enzymes produced by the fungus (laccase and Mn-dependent peroxidase), no decrease in PAH degradation was found in soil containing Cd or Hg at 10 to 100 ppm. In the presence of cadmium at 500 ppm in soil, degradation of PAHs by soil microflora was not affected whereas the contribution of fungus was negligible, probably due to the absence of Mn-dependent peroxidase activity. In the presence of Hg at 50 to 100 ppm or Cd at 100 to 500 ppm, the extent of soil colonization by the fungus was limited.  相似文献   

13.
Mutagens have been found in smoked, dried bonito products, popular items in Japanese foods. The mutagens were isolated by means of blue cotton, an absorbent cotton preparation with covalently bound trisulfo-copper-phthalocyanine residues, and by means of XAD-2 resin. The mutagenicity was positive in Salmonella typhimurium strain TA98 with metabolic activation. The mutagens are produced during the process of smoking-and-drying bonito (a process called baikan). The activity was much higher than that expected from the content of benzo[a]pyrene. In contrast to benzo[a]pyrene, the mutagens were not inhibited by ellagic acid. The mutagenicity was not abolished by treatment with nitrite. Thin-layer and high-performance liquid chromatographic analysis gave two mutagenic fractions, both of which were distinguishable from benzo[a]pyrene and from the pyrolysis products Trp-P-1, Trp-P-2, Glu-P-1, Glu-P-2, A alpha C and MeA alpha C. The major mutagenic component was not chromatographically distinguishable from IQ and MeIQx, and the minor one was very similar to MeIQ. The smoked, dried bonito products contained free fatty acids, which were inhibitory to the mutagenicity of the bonito products.  相似文献   

14.
A novel quantitative gene-locus mutation assay has been developed using a line of human lymphoblast cells, designated AHH-1, competent in oxidative xenobiotic metabolism. AHH-1 cells are sensitive to the mutagenic action of both chemically reactive mutagens and mutagens which require oxidative metabolism to exert their mutagenicity. These cells are readily mutated by direct exposure to ethyl methanesulfonate, ICR-191, 2-acetoaminofluorene, aflatoxin B1, benzo[a]pyrene (BP), cyclopenta[c, d]pyrene, dimethylnitrosamine, lasiocarpine, and 1-methylphenanthrene.  相似文献   

15.
In some cases, the Salmonella mutagenicity assay may fail to predict the carcinogenic potential of PAH (and of complex mixtures containing PAH) because of nonoptimal in vitro metabolic activation parameters. In this study, 7 petroleum-derived complex mixtures, as well as a number of individual PAH which were representative constituents of such mixtures, were tested in a Salmonella prescreen using quadrant plates with rat or hamster S9 at concentrations approximately 2-8 times those used in the standard assay. Some PAH (perylene, quinoline, benzo[b]chrysene, phenanthrene, anthracene) were optimally activated to mutagens by S9 at 400 microliters/plate. Rat S9 was similar to hamster S9 for most tested PAH, but anthracene and quinoline mutagenicity was enhanced by hamster S9. All 7 complex mixtures were more mutagenic with 200-400 microliters/plate S9; rat was generally slightly more efficient than hamster. Modifying this assay to include a prescreen using a range of S9 concentrations (and perhaps from species other than rat) may improve prediction of the potential carcinogenicity of complex petroleum-derived mixtures.  相似文献   

16.
Aromatic hydrocarbons in the range of 1-4 nuclear rings were examined for mutagenicity in the so-called "taped-plate assay". This modification of the Ames assay is particularly equipped for the detection of volatile mutagens. Of the many compounds tested only phenanthrene, pyrene, benzo[c]phenanthrene and benzoacenaphthylene were positive in this assay. The present data underline the exceptional behaviour of fluoranthene by being a rather potent bacterial mutagen with a volatile nature (as found in a previous study).  相似文献   

17.
Treatment of mutagenic primary aromatic amines with nitrous acid is known to decrease their mutagenicity. We examined some factors concerning the validity of using decreases in mutagenicity due to nitrous acid treatment as an indication of the presence of mutagenic primary aromatic amines in complex mixtures. We found that treatment of benzo[alpha]pyrene with nitrous acid for the extended periods of time previously employed leads to formation of three nitrobenzo[alpha]pyrene isomers. Some of the isomers are direct-acting mutagens for S. typhimurium with considerably greater mutagenicity than benzo[alpha]pyrene isomers. In attempts to minimize reaction of chemicals other than aromatic amines, we found that only very brief reaction periods are required for complete reaction of nitrous acid with representative aromatic amines, essentially eliminating their mutagenicity. During such brief reaction periods modification of benzo[alpha]pyrene is negligible, but phenols react readily. Chromatographic analysis indicated that reaction of nitrous acid with aromatic amines leads to the formation of families of products, thereby increasing the complexity of the mixtures in which the amines may occur. Thus, experiments examining the effects of nitrous acid on the mutagenic activity of complex mixtures must be carefully designed, and the results must be interpreted cautiously.  相似文献   

18.
Aromatic hydrocarbons in the range of 1–4 nuclear rings were examined for mutagenicity in the so-called “taped-plate assay”. This modification of the Ames assay is particularly equipped for the detection of volatile mutagens. Of the many compounds tested only phenanthrene, pyrene, benzo[c]phenanthrene and benzoacenaphthylene were positive in this assay. The present data underline the exceptional behaviour of fluoranthene by being a rather potent bacterial mutagen with a volatile nature (as found in a previous study).  相似文献   

19.
The stable isomers of 3- and 4-ring polycyclic aromatic sulfur heterocycles were tested for mutagenicity in the Ames standard plate incorporation test and a liquid pre-incubation modification of the Ames test. Of the 4 three-ring compounds tested, only naphtho[1,2-b]thiophene was mutagenic. Of the four-ring compounds, 7 of 13 were mutagenic in the standard Ames or pre-incubation Ames test. The highest activity for the 4-ring compounds was observed for phenanthrol[3,4-b]thiophene, a compound of approximately the same mutagenic potency in the Ames test as benzo[a]pyrene. The other active 4-ring compounds were of considerable less mutagenic potency than phenanthrol[3,4-b]thiophene. Mutagenicity for two of the 4-ring aromatic thiophenes could only be detected in the liquid pre-incubation Ames test. Salmonella typhimurium TA100 was the most sensitive strain to mutagenesis by these compounds, followed by TA98. All mutagenesis was indirect, requiring metabolic activation.  相似文献   

20.
The mutagenicity of benzo[a]pyrene (BP) and a number of methylated derivatives towards Salmonella typhimurium has been tested. The most mutagenic derivative tested was 6-methylbenzo[a]pyrene which produced about twice the number of revertants as did BP, 11-Methylbenzo[a]pyrene was slightly more mutagenic than BP. All the other compounds tested (7-, 8-, 9- and 10-methylbenzo[a]pyrene and 7,8- and 7,10-dimethylbenzo[a]pyrene) were significantly less active than benzo[a]pyrene. With the exception of 6-methylbenzo[a]pyrene, these results closely parallel the known carcinogenicity of the methylated benzo[a]pyrenes, and support the view that metabolic activation of BP may involve the 7-10 positions which are blocked in the methylated compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号