首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methotrexate exits L1210 mouse leukemia cells via multiple routes that include a unidirectional efflux component which is sensitive to bromosulfophthalein. This efflux component has been characterized in the present study after eliminating the contribution from the other efflux routes by treatment of the cells with an active ester of methotrexate and by reducing the assay pH to 6.2. The remaining efflux at pH 6.2 was greater than 90% sensitive to bromosulfophthalein. This route was also inhibited by probenecid, prostaglandin A1, diamide, 1-methyl-3-isobutylxanthine, various metabolic inhibitors, and by transfer of the cells to a buffer containing high concentrations of KCl. The inhibition by prostaglandin A1 was exceptionally potent and reached 50% at a concentration of 0.5 microM. An enhancement in efflux occurred upon the addition of glucose or by transfer of the cells to a non-saline buffer. When parameters relating to cellular energetics were measured, a reduction in ATP level was associated with the inhibition of efflux by probenecid, carbonylcyanide m-chlorophenylhydrazone, valinomycin, and antimycin A, whereas the increase in efflux by glucose was accompanied by an increase in intracellular ATP. Changes in ATP, however, were not associated with the inhibition by various other compounds or additions or with the enhancement in efflux by the non-anionic buffer. When the relative sensitivity of methotrexate efflux to bromosulfophthalein, 4,4'-diisothiocyanostilbene-2,2'-disulfonate, and lactic anhydride was compared with other anion transport systems, differences in specificity indicated that methotrexate was not exiting the cells via the bicarbonate/chloride exchange carrier, the lactate/H+ co-transport system, or a system which mediates the efflux of phthalate. However, a correlation was apparent between the sensitivity of methotrexate efflux to inhibition by prostaglandin A1, probenecid, and certain metabolic inhibitors and the ability of these same compounds to inhibit the unidirectional efflux of 3',5'-cyclic AMP in other cell lines, suggesting that methotrexate may share a common efflux route with cyclic nucleotides.  相似文献   

2.
Summary o-Phthalate is actively transported into L1210 cells and the primary route for cell entry is the same transport system which mediates the influx of methotrexate and other folate compounds. The identity of the influx route has been established by the following observations: (A) Phthalate influx is competitively inhibited by methotrexate and the inhibition constant (K i ) is comparable to theK i for half-maximal influx of methotrexate; (B) Various anions inhibit the influx of phthalate and methotrexate with comparableK i values; (C) The influx of phthalate and methotrexate both fluctuate in parallel with changes in the anionic composition of the external medium; and (D) A specific covalent inhibitor of the methotrexate transport system (NHS-methotrexate) also blocks the transport of phthalate. In contrast, the efflux of phthalate does not occur via the methotrexate influx carrier, but rather by two separate processes which can be distinguished by their sensitivities to bromosulfophthalein. Efflux via the bromosulfophthalein-sensitive route constitutes 75% of total efflux and is enhanced by glucose and inhibited by oligomycin. The inability of phthalate to exit via the methotrexate influx carrier is due to competing intracellular anions which prevent phthalate from interacting with the methotrexate binding site at the inner membrane surface.  相似文献   

3.
The bidirectional transport properties of cholate have been examined in leukemic L1210 mouse cells and compared with the transport of methotrexate. The cell entry of [3H]cholate was Na(+)-independent, linear with increasing concentrations of substrate, enhanced by decreasing pH, and uneffected by excess unlabeled cholate or by various anion-transport inhibitors and hence had the characteristics of passive diffusion or a pH-dependent mediated process with a high Kt for cholate. The efflux of [3H]cholate, however, could be attributed to carrier-mediated and energy-dependent transport. Efflux was rapid (t1/2 = 1.5 min) and could be increased with glucose and decreased with metabolic inhibitors, and it was inhibited by various compounds including bromosulfophthalein, probenecid, prostaglandin A1, reserpine, verapamil, quinidine, diamide, 1-methyl-3-isobutylxanthine and vincristine. The most potent inhibitor was prostaglandin A1, which reduced efflux by 50% at a concentration of 0.10 microM. Half-maximal inhibition by vincristine occurred at 4.8 microM. The maximum extent of inhibition with most of the inhibitors was 95%, although a lower value was observed with bromosulfophthalein (85%). When cholate efflux was compared with the efflux of methotrexate, both processes responded similarly to changes in the metabolic state of the cell. Moreover, the various inhibitors of cholate efflux also inhibited the efflux of methotrexate and the same concentration of each inhibitor was required for half-maximal inhibition of both processes. The efflux of folate and urate also proceeded via outwardly directed, unidirectional processes which were sensitive to bromosulfophthalein and probenecid. The results suggest that L1210 cells have the capacity for the unidirectional extrusion of cholate, methotrexate and probably other large, structurally dissimilar organic anions and that this efflux occurs via two or more very similar transport systems with a broad anion specificity. The function of an organic anion efflux system in vivo may be to facilitate the extrusion of cytotoxic metabolic anions which are too large to exit via the general anion-exchange carrier of these cells. Similarities in inhibitor specificity were also apparent between unidirectional anion efflux in L1210 cells and the drug efflux pump which is over-produced in cells with multidrug resistance.  相似文献   

4.
L1210 cells mediate the unidirectional and energy-dependent efflux of methotrexate. Efflux occurs primarily via a system which has a high sensitivity to prostaglandin A1, vincristine, reserpine, verapamil, and bromosulfophthalein, but evidence has also been obtained for a second efflux component with a lower response to these inhibitors. Pretreatment of L1210 cells with low concentrations of vincristine reduces methotrexate efflux by three fold and uncovers a second efflux component with an inhibitor specificity which is distinctly different from the primary efflux route. Vincristine treatment increased by 8-20-fold the concentration required for half-maximal efflux inhibition by prostaglandin A1, reserpine, bromosulfophthalein, and verapamil but had no effect on inhibition by probenecid, quinidine, or carbonylcyanide m-chlorophenylhydrazone. A selective block in the primary efflux system and retention of the second component was also achieved in cells exposed to low concentrations of prostaglandin A1 or bromosulfophthalein. These results support prior conclusions that L1210 cells contain both a primary and secondary unidirectional efflux route for methotrexate. The second system has been difficult to detect and quantitate since it comprises only 25% of total unidirectional efflux and shows a relatively low response to various efflux inhibitors.  相似文献   

5.
Summary Measurements of methotrexate transport in L1210 cells in the presence and absence ofd-glucose reveal that both influx and efflux are depressed in the absence ofd-glucose, whereas the steady-state accumulation of drug is enhanced. The reason for the increase in steady state is that the relative decline in efflux is greater than the decline in influx. Analysis of the concentration dependence of steady-state methotrexate accumulation ind-glucose-deprived cells indicates a linear relationship consistent with a one-carrier active transport model. Similar data in nondeprived cells is highly nonlinear and strongly supports the postulate that under physiological conditions influx and efflux of methotrexate are mediated by separate carrier systems. These results indicate that the efflux system, preferentially transporting methotrexate under normal conditions, cannot operate in the absence ofd-glucose, whereas the influx system is only partially inhibited under conditions of glucose deprivation.  相似文献   

6.
This study reports the isolation and characterization of a variant of the human CCRF-CEM leukemia cell line that overproduces the carrier protein responsible for the uptake of reduced folates and the folate analogue methotrexate. The variant was obtained by adapting CCRF-CEM cells for prolonged times to stepwise decreasing concentrations of 5-formyltetrahydrofolate as the sole folate source in the cell culture medium. From cells that were grown on less than 1 nM 5-formyl-tetrahydrofolate, a variant (CEM-7A) was isolated exhibiting a 95-fold increased Vmax for [3H]methotrexate influx compared to parental CCRF-CEM cells. The values for influx Km, efflux t0.5, and Ki for inhibition by other folate (analogue) compounds were unchanged. Affinity labeling of the carrier with an N-hydroxysuccinimide ester of [3H]methotrexate demonstrate an approximately 30-fold increased incorporation of [3H] methotrexate in CEM-7A cells. This suggests that the up-regulation of [3H]methotrexate influx is not only due to an increased amount of carrier protein, but also to an increased rate of carrier translocation or an improved cooperativity between carrier protein molecules. Incubation for 1 h at 37 degrees C of CEM-7A cells with a concentration of 5-formyltetrahydrofolate or 5-methyltetrahydrofolate in the physiological range (25 nM) resulted in a 7-fold decline in [3H]methotrexate influx. This down-regulation during incubations with 5-formyltetrahydrofolate or 5-methyltetrahydrofolate could be prevented by either the addition of 10-25 nM of the lipophilic antifolate trimetrexate or by preincubating CEM-7A cells with 25 nM methotrexate. The down-regulatory effect was specifically induced by reduced folates since incubation of CEM-7A cells with 25 nM of either methotrexate, 10-ethyl-10-deazaaminopterin, aminopterin, or folic acid, or a mixture of purines and thymidine, had no effect on [3H]methotrexate influx. Similarly, these down-regulatory effects on [3H]methotrexate transport by 5-formyltetrahydrofolate, and its reversal by trimetrexate or methotrexate, were also observed, though to a lower extent, for parental CCRF-CEM cells grown in folate-depleted medium rather than in standard medium containing high folate concentrations. These results indicate that mediation of reduced folate/methotrexate transport can occur at reduced folate concentrations in the physiological range, and suggest that the intracellular folate content may be a critical determinant in the regulation of methotrexate transport.  相似文献   

7.
ATP hydrolysis catalysed by the H+-ATPase of intact mitochondria can be induced by addition of ATP in the presence of valinomycin and KCl. This leads to an increase in intramitochondrial Pi and therefore allows investigation of potential Pi efflux pathways in intact mitochondria. Combining this approach with the direct measurement of both internal and external Pi, we have attempted to determine whether Pi efflux occurs via an atractyloside-sensitive transporter, by the classical operation of the Pi/H+ and Pi/dicarboxylate carriers, and/or by other mechanisms. Initial experiments re-examined the evidence that led to the current view that one efflux pathway for Pi is an atractyloside-sensitive ATP/ADP,0.5Pi transporter. No evidence was found in support of this efflux pathway. Rather, atractyloside-sensitivity of the low rate of Pi efflux observed in previous studies (oligomycin present) was accounted for by ATP entry on the well known ATP/ADP transport system followed by hydrolysis of ATP and subsequent Pi efflux. Thus, under these conditions, where ATP hydrolysis is not completely inhibited, Pi efflux becomes atractyloside sensitive most likely because this inhibitor blocks ATP entry, not because it directly inhibits Pi efflux. Substantial efflux of Pi from rat liver mitochondria is observed on generation of high levels of matrix Pi by ATP hydrolysis induced by valinomycin and K+ (oligomycin absent). A portion of this efflux can be inhibited by thiol-specific reagents at concentrations that normally inhibit the Pi/H+ and Pi/dicarboxylate carriers. However, a significant fraction of efflux continues even in the presence of p-chloromercuribenzoate, N-ethylmaleimide plus n-butylmalonate or mersalyl. The mersalyl-insensitive Pi efflux, which is also insensitive to carboxyatractyloside, is a saturable process, thus suggesting carrier mediation. During this efflux the mitochondrial inner membrane retains considerable impermeability to other low-molecular-weight anions (i.e., malate, 2-oxoglutarate). In conclusion, results presented here rule out an atractyloside-sensitive ATP/ADP,0.5Pi transport system as a mechanism for Pi efflux in rat liver mitochondria. Rather Pi efflux appears to occur on the classical Pi/H+ transport system as well as via a mersalyl-insensitive saturable process. The inhibitor-insensitive Pi efflux may occur on a portion of the Pi/H+ carrier molecules that exist in a state different from that normally catalysing Pi influx. Alternatively, a separate Pi efflux carrier may exist.  相似文献   

8.
Summary [14C]Phthalate is transported into L1210 cells via two separate routes, an anion exchange system whose primary substrates are folate compounds, and a second less active system which is sensitive to bromosulfophthalein. When the principal uptake component was blocked by a specific irreversible inhibitor of this system, the remaining route (at pH 7.4) appeared to be saturable and was inhibited by several anions in addition to bromosulfophthalein (K i =2 m), including 8-anilino-1-naphthalein sulfonate (K i =25 m), unlabeled phthalate (K i =500 m), and chloride (K i =3500 m). A pronounced effect by pH was also observed. Influx and total uptake of phthalate both increased progressively with decreasing pH and reached values that were 20-fold higher at pH 6.0, compared with pH 7.4. This pH-dependent increase could be blocked, however, by the addition of compounds (nigericin and carbonylcyanidem-chlorophenylhydrazone) which, in combination, collapse proton gradients. Phthalate efflux was relatively insensitive to changes in extracellular pH but could be inhibited (up to 90%) by bromosulfophthalein. Several other anions also inhibited efflux, but to a lesser extent, while chloride, phthalate, lactate, glycolate and acetate enhanced efflux up to 1.8-fold. Efflux also increased at pH 6.0, but not at pH 7.5, upon addition of nigericin and carbonylcyanidem-chlorophenylhydrazone. These results suggest that phthalate is a nonphysiological substrate for a carrier system which mediates transport via an anion/H+ symport mechanism. This system is not the lactate/H+ symport carrier of L1210 cells since: (A) phthalate and lactate influx were inhibited to differing degrees by various anions; and (B) lactic anhydride inhibited the influx and efflux of lactate but had no effect on the transmembrane movement of phthalate. The specificity of this system suggests that its primary anion substrate may be chloride.  相似文献   

9.
Summary Interaction of positively charged liposomes with Ehrlich ascites tumor cells increases the bidirectional transmembrane fluxes of the anionic folic acid analog, methotrexate. Negative liposomes reduce methotrexate influx. Stimulation of methotrexate influx by positively charged liposomes is time and concentration dependent, requiring at least a 5-min incubation with 2.5mm phosphatidylcholine containing 20% stearylamine for maximum effect. Stimulation is not appreciably reversed by washing the cells. Similar increases are observed for influx and efflux so that there is no change in the steady-state methotrexate electrochemical-potential difference across the cell membrane. The increase in influx appears to be a stimulation of the carrier-mediated transport process for methotrexate since both control and stimulated influx are abolished by the competitive inhibitor, 5-formyltetrahydrofolate or the sulfhydryl group inhibitor,p-chloromercuriphenylsulfonic acid and the Q10 of the system remains unchanged. Influx of 5-methyltetrahydrofolate, which shares the same transport carrier as methotrexate, is also stimulated. However, the transport of folic acid, which is structurally similar to methotrexate but does not utilize the carrier, is unaffected. The kinetic change induced by positively charged liposomes is an increase in theV ma in , while theK t in remains unchanged. Trans-stimulation of methotrexate influx by 5-formyltetrahydrofolate occurs to the same extent in the presence or absence of positively charged liposomes. The liposomes have no apparent effect on the intracellular water, the extracellular space, or the chloride distribution ratio. The data suggest that interaction of positively charged liposomes with Ehrlich ascites tumor cells accelerates the rate of transposition of the membrane carrier system for methotrexate, altering the kinetics of transport without a change in transport thermodynamics.  相似文献   

10.
Nonlabeled and tritiated stereoisomers of 5-methyltetrahydrofolate were prepared and were both shown to be substrates for the high affinity H4 folate cofactor membrane transport carrier in Ehrlich ascites tumor cells. Both the enzymically active form and the isomer having the opposite configuration at carbon 6 inhibited the influx of enzymically synthesized (+)-5-methyltetrahydrofolate, methotrexate, and aminopterin. When added to the media of cells preloaded with methotrexate, both isomers stimulated a net efflux of the antifolate from the cell. Influx of the natural and unnatural isomers followed Michaelis-Menten kinetics with comparable Km values. Each isomer competitively inhibited influx of the other.  相似文献   

11.
The thiamin transporter encoded by SLC19A2 and the reduced folate carrier (RFC1) share 40% homology at the protein level, but the thiamin transporter does not mediate transport of folates. By using murine leukemia cell lines that express no, normal, or high levels of RFC1, we demonstrate that RFC1 does not mediate thiamin influx. However, high level RFC1 expression substantially reduced accumulation of the active thiamin coenzyme, thiamin pyrophosphate (TPP). This decreased level of TPP, synthesized intracellularly from imported thiamin, resulted from RFC1-mediated efflux of TPP. This conclusion was supported by the following observations. (i) Efflux of intracellular TPP was increased in cells with high expression of RFC1. (ii) Methotrexate inhibits TPP influx. (iii) TPP competitively inhibits methotrexate influx. (iv) Loading cells, which overexpress RFC1 to high levels of methotrexate to inhibit competitively RFC1-mediated TPP efflux, augment TPP accumulation. (v) There was an inverse correlation between thiamin accumulation and RFC1 activity in cells grown at a physiological concentration of thiamin. The modulation of thiamin accumulation by RFC1 in murine leukemia cells suggests that this carrier may play a role in thiamin homeostasis and could serve as a modifying factor in thiamin nutritional deficiency as well as when the high affinity thiamin transporter is mutated.  相似文献   

12.
A broad spectrum of structurally diverse anions reversibly inhibits the influx of methotrexate in L1210 cells. Several of the more effective anions and their respective inhibition constants (Ki values) were: 5-methyltetrahydrofolate (0.3 μm), bromosulfophthalein (2 μm), thiamine pyrophosphate (3 μm), 8-anilino-1-naphthalene sulfonate (7 μm), phthalate (20 μm), and AMP (50 μm). Moderate inhibition was observed with Pi (Ki = 400 μm) and other divalent inorganic anions, while small monovalent anions such as Cl? (Ki = 30 mm) were the least effective. When these same anions were tested for an effect on methotrexate efflux, stimulation was observed with some anions, while others had no effect. Enhancement was produced by folate compounds and p-aminobenzoylglutamate, small monovalent (e.g., Cl?, acetate, and lactate) and divalent (e.g., phosphate and succinate) anions, a few nucleotides (e.g., AMP), and thiamine pyrophosphate, while little or no effect was associated with trivalent anions (e.g., citrate), most nucleotides, and large organic anions (e.g., bromosulfophthalein, NAD, and NADP). Anions with the ability to promote methotrexate efflux in control cells lost this capacity upon exposure of the cells to an irreversible inhibitor of methotrexate influx. These results support the hypothesis that methotrexate transport proceeds via an anion-exchange mechanism and moreover provide evidence that anion substrates for this system can be identified by their ability to promote methotrexate efflux. Anions which appear most likely to participate in this exchange cycle in vivo are Pi and AMP.  相似文献   

13.
We have isolated stable variants of the L1210 cell exhibiting increased transport inward of the folate analog, methotrexate. These variants show 3- to 14-fold increases in [3H]methotrexate influx compared to parental cells but are unaltered for [3H]methotrexate efflux. This increased influx in each variant is quantitatively reflected in corresponding elevations in intracellular exchangeable levels of drug at steady state, but there is no alteration in membrane potential. The increases in influx are associated with increased values for influx Vmax for a system normally transporting reduced folates and the same increase in the amount of a specific binding component at the cell surface. Otherwise, values for influx Km and specificity for various folate structures are unchanged. This alteration in [3H]methotrexate influx is biochemically and genetically stable, since it is expressed in isolated plasma membrane vesicles and is retained during growth in non-selective medium. Following addition of cycloheximide, the same rate of decay of this transport activity (t 1/2 = 126 +/- 24 to 137 +/- 26 min) was shown for parental and variant cells. From these results we conclude that turnover of this transport property occurs in these cells which is genetically regulated. Also, the elevated transport activity inward for this folate analog in these variant cells is probably the result of a genetic alteration up-regulating the rate of synthesis of the "putative" carrier protein itself. The absence of any effect on efflux of [3H]methotrexate in these variants in the face of evidence for increased synthesis of the carrier protein for the system mediating influx of this folate analog is construed as further evidence for the nonidentity of systems mediating each flux that we proposed on the basis of earlier kinetic studies.  相似文献   

14.
Studies are reported on the characterization of a new isolate within a novel class of variants of the L1210 cell exhibiting markedly increased transport inward of folate analogues. This variant (L1210/R83), which was selected in the presence of the antifolate metoprine, exhibited a 40-fold increase in [3H]aminopterin influx compared to parental cells and a modest (4-5-fold) increase in [3H]aminopterin efflux. The increase in influx was associated with a comparable increase in influx Vmax for the one-carbon, reduced folate transport system and the same increase in the amount of specific binding of [3H]aminopterin on the cell surface. Values for influx Km for [3H]aminopterin and specificity for various folate structures were unchanged. The alteration in influx Vmax and more rapid efflux accounted for the different level of intracellular exchangeable level of drug at steady state in this variant compared with parental L1210 cells. Otherwise, membrane potential was unchanged. The N-hydroxysuccinimide ester of [3H]aminopterin was used to covalently label the specific binding protein for folate compounds in the plasma membrane of variant and parental L1210 cells. Incorporation of label into this protein was stable under a variety of conditions and accounted for 97 and 52% of total cellular labeling, respectively, for membrane derived from R83 and parental L1210 cells at a reagent concentration of 20 nM. Specific affinity labeling on the surface of parental and variant cells was decreased in the presence of aminopterin, methotrexate, or 5-formyltetrahydrofolate, but not in the presence of folic acid. Also, [3H]aminopterin influx in these cells was inhibited by the N-hydroxysuccinimide ester of aminopterin or methotrexate, but not the N-hydroxysuccinimide ester of folic acid. These findings, in addition to the increased affinity labeling of this variant, which corresponds to the increase in influx of [3H] aminopterin also seen, appears to identify the affinity labeled protein as a component of the "classical" one-carbon, reduced folate transport system in these cells. The affinity labeled protein from each cell type was solubilized in sodium dodecyl sulfate or extracted in detergent in the presence of proteinase inhibitors and was found to elute from Sephacryl S-300 and migrate during sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a single peak of Mr = 45,000-48,000. Recovery of labeled binding protein in these fractions from R83 variant cells was approximately 40 times greater than that from parental cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Earlier studies from our laboratory (Dembo, M., Sirotnak F. M., and Moccio, D. M. (1984) J. Membr. Biol. 78, 9-17) suggested that methotrexate (MTX) efflux from L1210 cells was mediated predominantly by an ATP-dependent, outwardly directed, mechanism. To examine this process further, we utilized predominantly (74%) inside-out plasma membrane vesicle preparations derived from an L1210 cell variant (L1210/R24) with 15-fold reduced Vmax for [3H]MTX influx. Efflux of [3H]MTX, under nonionic buffer conditions, in these inside-out membrane vesicles was temperature and ATP dependent (apparent Km = 0.40 +/- 0.06 mM), osmotically sensitive, and unaffected by protonophores. The presence of K+, Na+, Cl-, and HCO3- at their physiological concentrations had no effect on [3H]MTX efflux. Other triphosphonucleotides (GTP and CTP), but not a nonhydrolyzable analogue, adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S), could also stimulate efflux, but to a lesser extent. Also, ATP gamma S and orthovanadate were potent inhibitors of ATP-dependent efflux of [3H]MTX. Other experiments revealed a system with low saturability for [3H]MTX during efflux (apparent Km = 46 +/- 7 microM), but extremely high capacity (106 +/- 15 pmol/min/mg protein), and a pH optimum in the range of 5.5-6. However, appreciable efflux was measured in the physiological range of pH 6.7-6.9. A number of inhibitors or copermeants for ATP-dependent [3H]MTX efflux in intact L1210 cells were inhibitors of ATP-dependent efflux in inside-out plasma membrane vesicles, including, cholate, bromosulfophthalein, verapamil, quinidine, and reserpine. These findings and other results showing that bromosulfophthalein will completely inhibit efflux are consistent with a role for an ATPase in [3H]MTX efflux, and suggest that the process under study is the bromosulfophthalein-sensitive, ATP-dependent route responsible for the majority of [3H]MTX efflux in intact L1210 cells.  相似文献   

16.
Properties of the methotrexate (MTX) transport carrier were examined in a stable single-step 16-fold MTX-resistant L1210 murine leukemia cell line with unchanged dihydrofolate reductase gene copy and thymidylate synthase and dihydrofolate reductase levels and activities. MTX influx was markedly depressed due to a decrease in Vmax without a change in Km. From this cell line a clonal variant with greater resistance to MTX was identified due solely to a further decrease in influx Vmax. Trans-stimulation of MTX influx by 5-formyltetrahydrofolate was induced in parental but not resistant cells. Analysis of specific MTX surface binding demonstrated a small increase in the number of carriers in the first- and second-step resistant lines. Affinity labeling of cells with an N-hydroxysuccinimide ester derivative of [3H]MTX demonstrated carriers with comparable molecular weights in the parent and second-step transport defective lines. In two partial revertants with increased MTX sensitivity isolated from the second-step resistant lines, MTX influx was increased but surface membrane-binding sites were unchanged suggesting that recovery of transport was due to normalization of carrier function rather than an increase in the number of carriers. These studies suggest that impaired MTX transport in these lines is not due to an alteration in the association of the transport carrier with its substrate at the cell surface. Rather, resistance may be due to an alteration in the mobility of the carrier possibly associated with a protein change in the carrier itself or the cell membrane that surrounds it.  相似文献   

17.
The ATP-Mg/Pi carrier in liver mitochondria is activated by micromolar Ca2+ and mediates net adenine nucleotide transport into and out of the mitochondrial matrix. The purpose of this study was to characterize certain features of ATP-Mg/Pi carrier activity that are essential for understanding how the mitochondrial adenine nucleotide content is regulated. The relative importance of ATP and ADP as transport substrates was investigated using specific trap assays to measure their separate rates of carrier-mediated efflux with Pi as the external counterion. Under energized conditions ATP efflux accounted for 88% of total ATP+ADP efflux. With oligomycin present to lower the matrix ATP/ADP ratio, ATP efflux was eliminated and ADP efflux was relatively unaffected. Mg2+ was stoichiometrically required for ATP influx and is probably transported simultaneously with ATP. Ca2+ and Mn2+ could substitute for the stoichiometric Mg2+ requirement. ADP influx and Pi-induced adenine nucleotide efflux were unaffected by external Mg2+. Experiments with Pi analogues suggested that Pi is transported as the divalent anion, HPO4(2-). The results show that ATP-Mg and divalent Pi are the major transport substrates; the most probable transport mechanism for the ATP-Mg/Pi carrier is an electroneutral exchange. The results are consistent with the hypothesis that the direction and magnitude of net adenine nucleotide movements are determined mainly by the (ATP-Mg)2- and HPO4(2-) concentration gradients across the inner mitochondrial membrane.  相似文献   

18.
Summary Interaction of positively (phosphatidylcholine/stearylamine 51) or negatively (phosphatidylcholine/stearic acid 51) charged liposomes with Ehrlich ascites tumor cells for 1–5 min increases or decreases, respectively, the bidirectional fluxes of the folic acid analog, methotrexate. These effects on influx and efflux appear to be symmetrical since the liposomes do not change the intracellular level of methotrexate at the steady state. Influx kinetics show that these alterations result from an increase or decrease in theV max with no change in theK m in . These effects appear to be specific for the methotrexate-tetrahydrofolate carrier system since the transport of other compounds which utilize this carrier, aminopterin, 5-methyltetrahydrofolate, and 5-formyltetrahydrofolate, is affected similarly to methotrexate, whereas, the transport of folic acid, a compound similar in structure and charge but not significantly transported by this carrier is unaffected by liposomes. Once cells are exposed to charged liposomes, the effects on methotrexate transport cannot be reversed by washing the cells free of the extracellular liposomes. If, however, cells are exposed to liposomes of one charge, washed and then exposed to liposomes of the opposite charge, methotrexate influx is reversed to control rates. The effects of charged liposomes on methotrexate influx were not abolished by treating the cells with neuraminidase, metabolic inhibitors or lowering the temperature to 4°C. Studies on the uptake of [14C] liposomes show that these effects are not proportional to the total amount of lipid associated with the cell but result from an initial rapid liposome-cell association that is not dependent on temperature or energy metabolism nor related to cell surface charge.  相似文献   

19.
Methotrexate transport in L1210 cells is highly sensitive to inhibition by p-chloromercuriphenylsulfonate (CMPS) and, to a lesser extent, by N-ethylmaleimide. A 50% reduction in the methotrexate influx rate occurred upon exposure of cells to 3 μM CMPS or 175 μM N-ethylmaleimide, while complete inhibition was achieved at higher levels of these agents. Dithiothreitol reversed the inhibition by CMPS, suggesting that a sulfhydryl residue is involved. This residue is apparently not located at the substrate binding site of the transport protein, since methotrexate failed to protect the system from inactivation by either CMPS or N-ethylmaleimide, and the transport protein retained the ability to bind substrate (at 4°C) after exposure to these inhibitors (at 37°C). Methotrexate efflux was also inhibited by CMPS (50% at 4 μM), indicating that both the uptake and efflux of methotrexate in L1210 cells occur via the same transport system. High concentrations of CMPS (greater than 20 μM) increased the efflux rate, apparently by damaging the cell membrane and allowing the passive diffusion of methotrexate out of the cell.  相似文献   

20.
Na- and Cl-dependent glycine transport was investigated in human red blood cells. The effects of the carrier substrates (Na, Cl, and glycine) on the glycine transport kinetics were studied with the goal of learning more about the mechanism of transport. The K1/2-gly was 100 microM and the Vmax-gly was 109 mumol/kg Hb.h. When cis Na was lowered (50 mM) the K1/2-gly increased and the Vmax-gly decreased, which was consistent with a preferred order of rapid equilibrium loading of glycine before Na. Na-dependent glycine influx as a function of Na concentration was sigmoidal, and direct measurement of glycine and Na uptake indicated a stoichiometry of 2 Na:1 glycine transported. The sigmoidal response of glycine influx to Na concentration was best fit by a model with ordered binding of Na, the first Na with a high K1/2 (greater than 250 mM), and the second Na with a low K1/2 (less than 10.3 mM). In the presence of low Cl (cis and trans 5 mM), the K1/2-gly increased and the Vmax-gly increased. The Cl dependence displayed Michaelis-Menten kinetics with a K1/2-Cl of 9.5 mM. At low Cl (5 mM Cl balanced with NO3), the glycine influx as a function of Na showed the same stoichiometry and Vmax-Na but a decreased affinity of the carrier for Na. These data suggested that Cl binds to the carrier before Na. Experiments comparing influx and efflux rates of transport using red blood cell ghosts indicated a functional asymmetry of the transporter. Under the same gradient conditions, Na- and Cl-dependent glycine transport functioned in both directions across the membrane but rates of efflux were 50% greater than rates of influx. In addition, the presence of trans substrates modified influx and efflux differently. Trans glycine largely inhibited glycine efflux in the absence or presence of trans Na; trans Na largely inhibited glycine influx and this inhibition was partially reversed when trans glycine was also present. A model for the binding of these substrates to the outward-facing carrier is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号