首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The transforming protein of Rous sarcoma virus, pp60v-src, is known to be a tyrosine protein kinase, but the mechanism of cell transformation remains unclear. In further investigating pp60v-src structure and function, we have analyzed two temperature-sensitive (ts) Rous sarcoma virus src gene mutants, tsLA29 and tsLA32. The mutations in tsLA29 and tsLA32 map in the carboxy-terminal region and the amino-terminal half of pp60v-src, respectively, and encode mutant proteins with either temperature-labile (tsLA29) or -stable (tsLA32) kinase activities. Here we examined the intracellular processing and localization of these pp60v-src mutants and extended our characterization of transformation parameters expressed by cells infected by the Rous sarcoma virus variants. No obvious defects in functional integrity of the tsLA32 pp60v-src could yet be demonstrated, whereas the tsLA29 pp60v-src was perturbed not only in kinase activity, but also in aspects of protein processing and localization. Analysis of transformation parameters expressed by infected cells demonstrated the complete temperature lability of both mutants.  相似文献   

2.
Lowering the temperature from 41 to 36 degrees C stimulates quiescent tsLA23-NRK rat cells (infected with the tsLA23 mutant of the Rous sarcoma virus) in serum-free medium to resume cycling and initiate DNA replication by reactivating the tsLA23-RSV's abnormally thermolabile pp60v-src protein-tyrosine kinase. Inactivating the enzyme in these pp60v-src-stimulated cells by again raising the temperature to 41 degrees C after the cells had initiated DNA replication did not prevent the completion of DNA replication and entry into the G2 phase, but it stopped the initiation of mitosis. Adding serum at the time of the temperature increase replaced the lost pp60v-src activity and the cells were able to continue to mitosis. The G2-arrested cells at 41 degrees C were able to initiate mitosis when pp60v-src was reactivated again by lowering the temperature to 36 degrees C. These observations suggest that protein-tyrosine kinase activity is needed to initiate mitosis and that the tsLA23-NRK cell is a good model for studying the function of this kinase activity in the initiation of mitosis.  相似文献   

3.
4.
5.
Previous studies have shown that carboxyl-terminal mutation of pp60c-src can activate its transforming ability. Conflicting results have been reported for the transforming ability of pp60c-src mutants having only mutations outside its carboxyl-terminal region. To clarify the effects of such mutations, we tested the activities of chimeric v(amino)- and c(carboxyl)-src (v/c-src) proteins at different dosages in NIH 3T3 cells. The focus-forming activity of Rous sarcoma virus long terminal repeat (LTR)-src expression plasmids was significantly reduced when the v-src 3' coding region was replaced with the corresponding c-src region. This difference was masked when the Rous sarcoma virus LTR was replaced with the Moloney murine leukemia virus LTR, which induced approximately 20-fold more protein expression, but even focus-selected lines expressing v/c-src proteins were unable to form large colonies in soft agarose or tumors in NFS mice. This suggests that pp60c-src is not equally sensitive to mutations in its different domains and that there are at least two distinguishable levels of regulation, the dominant one being associated with its carboxyl terminus. v/c-src chimeric proteins expressed with either LTR had high in vitro specific kinase activity equal to that of pp60v-src but, in contrast, were phosphorylated at both Tyr-527 and Tyr-416. Total cell protein phosphotyrosine was enhanced in cells incompletely transformed by v/c-src proteins to the same extent as in v-src-transformed cells, suggesting that the carboxyl-terminal region may affect substrate specificity in a manner that is important for transformation.  相似文献   

6.
The src gene of Rous sarcoma virus (v-src) and its cellular homolog, the c-src gene, share extensive sequence homology. The most notable differences between these genes reside in the region encoding the carboxy terminus of the src proteins. We constructed mutations within the 3' end of the v-src gene to determine the significance of this region to the transforming potential of the v-src protein, pp60v-src. The mutants CHdl300 and CHis1511 contain mutations that alter the last 23 amino acids of pp60v-src, whereas the mutant CHis1545-C contains a linker insertion that alters the last 11 amino acids of pp60v-src, and the mutant CHis1545-H contains a linker insertion that results in a 9-amino-acid insertion at position 415. Plasmids bearing each of these mutations were unable to transform chicken cells when introduced into these cells by DNA transfection. In addition, the structurally altered src proteins encoded by the mutants had much-reduced levels of tyrosine protein kinase activity in vivo, as measured by autophosphorylation and phosphorylation of the 34,000-Mr cellular protein, and in vitro, as determined by measuring the level of pp60src autophosphorylation. These data indicate that the carboxy-terminal amino acid sequences play an important role in maintaining the structure of the catalytic domain of pp60v-src. In contrast, the transfection of chicken cells with plasmid DNA containing a chimeric v-c-src gene resulted in morphological cell transformation and the synthesis of an enzymatically active hybrid protein. Therefore, the carboxy-terminal sequence alterations observed in the c-src protein do not alone serve to alter the functional activity of a hybrid v-c-src protein appreciably.  相似文献   

7.
The transforming protein of Rous sarcoma virus, pp60v-src, is covalently coupled to myristic acid by an amide linkage to glycine 2. Myristylation promotes the association of pp60v-src with cellular membranes, and this subcellular location is essential for transforming activity. The findings presented here, in conjunction with the previous reports of others, imply that the seventh amino acid encoded by v-src might be important in the myristylation reaction. Replacement of lysine 7 by asparagine greatly reduced the myristylation, membrane association, and transforming activity of pp60v-src. In contrast, substitution of arginine at residue 7 had no effect on any of these properties of pp60v-src. Addition of amino acids 1 to 7 encoded by v-src was sufficient to cause myristylation of a src-pyruvate kinase fusion protein. We conclude that the recognition sequence for myristylation of pp60v-src comprises amino acids 1 to 7 and that lysine 7 is a critical component of this sequence.  相似文献   

8.
The v-src oncogene of Rous sarcoma virus (RSV) is able to transform both avian and mammalian cells, but the mutant allele v-src-L displays a host range dependence for transformation, transforming chicken but not rat cells with wild-type efficiency. This host range restriction can be detected by measuring growth in low serum, saturation density, and anchorage independent growth. In addition, rat cells expressing v-src-L do not form tumors in syngeneic rats or nude mice, but RSV carrying the mutant allele causes tumors in chicks, although at a reduced efficiency and with increased latency. To determine the lesion responsible for this phenotype, we sequenced the entire v-src gene from the parental B77 strain of RSV, as well as the mutant allele. v-src-L is missing 3 nucleotides present in the wild-type parent, RSV B31, eliminating Phe-172, an invariant residue in a conserved region of src-related proteins known as SH-2. The kinase activity of pp60v-src-L was indistinguishable from that of the wild type in chicken cells but was significantly reduced in rat cells as assayed by an in vitro immune complex assay; in vivo phosphorylation of one specific substrate, p36 (calpactin I heavy chain); and total phosphotyrosine-containing proteins. In addition, the pattern of phosphotyrosine-containing proteins in rat cells was qualitatively different when cells containing pp60v-src-L were compared with cells with wild-type pp60v-src, even though both pp60v-src proteins were membrane associated. The data are consistent with a role for the SH-2 region in substrate specificity.  相似文献   

9.
Expression of pp60v-src, the transforming protein of Rous sarcoma virus, arrests the growth of the yeast Saccharomyces cerevisiae. To determine the basis of this growth arrest, yeast strains were constructed that expressed either wild-type v-src or various mutant v-src genes under the control of the galactose-inducible, glucose repressible GAL1 promoter. When shifted to galactose medium, cells expressing wild-type v-src ceased growth immediately and lost viability, whereas cells expressing a catalytically inactive mutant (K295M) continued to grow normally, indicating that the kinase activity of pp60v-src is required for its growth inhibitory effect. Mutants of v-src altered in the SH2/SH3 domain (XD4, XD6, SPX1, and SHX13) and a mutant lacking a functional N-terminal myristoylation signal (MM4) caused only a partial inhibition of growth, indicating that complete growth inhibition requires either targeting of the active kinase or binding of the kinase to phosphorylated substrates, or both. Cells arrested by v-src expression displayed aberrant microtubule structures, alterations in DNA content and elevated p34CDC28 kinase activity. Immunoblotting with antiphosphotyrosine antibody showed that many yeast proteins, including the p34CDC28 kinase, became phosphorylated at tyrosine in cells expressing v-src. Both the growth inhibition and the tyrosine-specific protein phosphorylation observed following v-src expression were reversed by co-expression of a mammalian phosphotyrosine-specific phosphoprotein phosphatase (PTP1B). However a v-src mutant with a small insertion in the catalytic domain (SRX5) had the same lethal effect as wild-type v-src, yet induced only very low levels of protein-tyrosine phosphorylation. These results indicate that inappropriate phosphorylation at tyrosine is the primary cause of the lethal effect of pp60v-src expression but suggest that only a limited subset of the phosphorylated proteins are involved in this effect.  相似文献   

10.
Four temperature-sensitive (ts) Rous sarcoma virus src gene mutants with lesions in different parts of the gene represent three classes of alteration in pp60src. These classes are composed of mutants with (i) heat-labile protein kinase activities both in vitro and in vivo (tsLA27 and tsLA29), (ii) heat-labile kinases in vivo but not in vitro (tsLA33), and (iii) neither in vivo nor in vitro heat-labile kinases (tsLA32). The latter class indicates the existence of structural or functional pp60src domains that are required for transformation but do not grossly affect tyrosine kinase activity.  相似文献   

11.
When analyzed from transformed cell lysates, pp60v-src, the product of the Rous sarcoma virus src gene, typically appears as a single polypeptide of 60,000 molecular weight, phosphorylated at two major sites, an amino-terminal region serine residue and carboxy-terminal region tyrosine residue. We describe here the identification of variant forms of pp60v-src present in transformed cell lysates that exhibited an altered electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels. This change in migration appeared to be the result of some alteration in the amino-terminal portion of the molecule and paralleled the appearance of extensive amino-terminal region tyrosine phosphorylation on the pp60v-src molecule. These structural modifications were further correlated with a dramatic increase in the protein kinase-specific activity of pp60v-src. The detection of these variant forms of pp60v-src depended on the prior treatment of the transformed cell cultures with vanadium ions or the inclusion in the cell disruption buffer of Mg2+ or ATP-Mg2+. The implications is that modified, highly active forms of the pp60v-src protein exist in transformed cells, but are transient and rapidly converted to stable forms, possibly by specific dephosphorylation. We suggest that amino-terminal region tyrosine phosphorylation of pp60v-src, presumably the result of autophosphorylation, serves to greatly enhance src protein enzymatic activity, but that much of the regulation of this transforming protein's function may involve a phosphotyrosyl protein phosphatase.  相似文献   

12.
The transmembrane potential of Rous sarcoma virus (RSV)-infected Rat-1 cells, expressing the pp60v-src protein kinase, is markedly less negative (by approximately 30 mV) than that of their normal counterparts. By contrast, the membrane potential of Rat-1 cells infected with Kirsten sarcoma virus is virtually unaltered. The RSV-induced membrane depolarization is shown to be due to a severalfold increase in the cation permeability ratio (PNa/PK) of the plasma membrane. When cells infected with a temperature-sensitive mutant of RSV (ts LA29), encoding a src protein with heat-labile kinase activity, are shifted from the nonpermissive to the permissive temperature, a rapid and sustained membrane depolarization is observed. Conversely, thermal inactivation of the ts LA29 pp60v-src kinase activity rapidly restores the membrane potential to near normal levels. Addition of epidermal growth factor, platelet-derived growth factor, or insulin to uninfected cells fails to cause a detectable change in membrane potential. We conclude that, unlike growth factor receptor tyrosine kinases, pp60v-src can induce, either directly or indirectly, a major change in the membrane permeability to monovalent cations.  相似文献   

13.
We constructed a mutant, called RSV-SF2, at the ATP-binding site of pp60v-src. In this mutant, lysine-295 is replaced with methionine. SF2 pp60v-src was found to have a half-life similar to that of wild-type pp60v-src and was localized in the membranous fraction of the cell. Rat cells expressing SF2 pp60v-src were morphologically untransformed and do not form tumors. The SF2 pp60v-src isolated from these cells lacked kinase activity with either specific immunoglobulin or other substrates, and expression of SF2 pp60v-src failed to cause an increase of total phosphotyrosine in the proteins of infected cells. Wild-type pp60v-src was phosphorylated on serine and tyrosine in infected cells, and the analogous phosphorylations could also be carried out in vitro. Phosphorylation of serine was catalyzed by a cyclic AMP-dependent protein kinase, and phosphorylation of tyrosine was perhaps catalyzed by pp60v-src itself. By contrast, SF2 pp60v-src could not be phosphorylated on serine or tyrosine either in infected cells or in vitro. These findings strengthen the belief that the phosphotransferase activity of pp60v-src is required for neoplastic transformation by the protein and suggest that the binding of ATP to pp60v-src elicits an allosteric change required for phosphorylation of serine in the protein.  相似文献   

14.
35S- and 32P-labeled proteins from control chick embryo fibroblasts and from fibroblasts transformed by UR2 sarcoma virus, or by a temperature-sensitive mutant (tsLA29) of Rous sarcoma virus, were separated by two-dimensional electrophoresis on giant gels to detect transformation-specific changes in protein synthesis and total phosphorylation. A nontransforming avian retrovirus, UR2-associated virus (UR2AV), was also studied. Virus-coded proteins appear in whole cell lysates of all infected cells. The structural proteins can be identified by comparison with proteins immunoprecipitated with antivirus serum. The transforming proteins pp60src and p68ros, present in cells transformed with Rous sarcoma virus and UR2, respectively, are phosphorylated in vivo. Eighteen increases and eight decreases in cellular phosphoproteins are associated with transformation, and revert toward normal levels when cells infected with tsLA29 are incubated at 42 degrees C. These changes are more extensive than previously reported, but none represent new phosphorylations, since all phosphoproteins seen in transformed cells also appear to be phosphorylated to a certain extent in control cells. Fifteen cellular proteins show increased relative rates of synthesis apparently related either to transformation or to growth at 42 degrees C. Four other proteins are increased exclusively in cells incubated at 42 degrees C, but not at 37 degrees C, whether transformed or not. Eleven additional increases in the synthesis of cellular proteins, many quite large, and one seemingly a de novo induction, appear to be specific for transformation. These changes occur in cells transformed by either UR2 or Rous sarcoma virus at 37 degrees C, do not occur with UR2AV infection, and tend to revert in cells infected with tsLA29 incubated at 42 degrees C. These 11 changes may represent increases in cellular gene expression that are related specifically to the maintenance of the transformed state.  相似文献   

15.
The host cell regulators and substrates of the Rous sarcoma virus transforming protein pp60v-src remain largely unknown. Viral mutants which induce a host-dependent phenotype may result from mutations which affect the interaction of pp60v-src with host cell components. To isolate such mutants and to examine the role of different regions of src in regulating pp60v-src function, we generated 46 linker insertion and 5 deletion mutations within src. The mutant src genes were expressed in chicken embryo fibroblasts and in rat-2 cells by using retrovirus expression vectors. Most linker insertions within the kinase domain (residues 260 to 512) inactivated kinase activity and transforming capacity, while most insertions in the N-terminal domain and at the extreme C terminus were tolerated. A number of mutations generated a host-dependent phenotype. Insertions after residues 225 and 227, within the N-terminal regulatory domain (SH2), produced a fusiform transformation in chicken embryo fibroblasts and abolished transformation in rat-2 cells; a similar phenotype also resulted from two deletions affecting SH2 (residues 149 to 174 and residues 77 to 225). Insertions immediately C terminal to Lys-295, which is involved in ATP binding, also produced a conditional phenotype. Insertions after residues 299 and 300 produced a temperature-sensitive phenotype, while insertions after residues 304 and 306 produced a host cell-dependent phenotype. An insertion which removed the major tyrosine autophosphorylation site (Tyr-416) greatly reduced transformation of rat-2 cells, a property not previously observed with other mutations at this site. We conclude that mutations at certain sites within src result in conditional phenotypes. These sites may represent regions important in interactions with host cell components.  相似文献   

16.
T E Kmiecik  D Shalloway 《Cell》1987,49(1):65-73
pp60c-src is phosphorylated in vivo at tyrosine 527, a residue not present in pp60v-src (its transforming homolog), and not at tyrosine 416, its site of in vitro autophosphorylation. To test the hypothesis that tyrosine phosphorylation regulates pp60c-src biological activity, we constructed and studied pp60c-src mutants in which Tyr 527 and Tyr 416 were separately or coordinately altered to phenylalanine. Tyr----Phe 527 mutation strongly activated pp60c-src transforming and kinase activities, whereas the additional introduction of a Tyr----Phe 416 mutation suppressed these activities. Tyr----Phe 416 mutation of normal pp60c-src eliminated its partial transforming activity, which suggests that transient or otherwise restricted phosphorylation of Tyr 416 is important for pp60c-src function even though stable phosphorylation is not observed in vivo.  相似文献   

17.
The oncogenic pp60v-src product of ASV (avian sarcoma virus) is shown to be a potent endogenous mitogen, which, unlike mitogens such as PDGF (platelet derived growth factor), is able to stimulate host cell proliferation without the help of other growth factors. Thus, NRK rat cells, infected with a temperature-sensitive ASV mutant which produces an abnormally thermolabile pp60v-src, became proliferatively quiescent at a pp60v-src-inactivating 40 degrees C in medium containing either 0.2% calf serum or no serum at all. Adding PDGF stimulated the quiescent tsASV-NRK cells at 40 degrees C to initiate DNA replication in medium containing 0.2% serum, but not in serum-free medium. By contrast, activating internal pp60v-src by dropping the temperature to a permissive 36 degrees C stimulated these quiescent cells to transit G1, initiate DNA replication and to enter mitosis even in serum-free medium. Thus, relative to PDGF, endogenous pp60v-src behaves as a complete mitogen.  相似文献   

18.
Tyrosine-specific phosphorylation of cellular proteins has been implicated in the neoplastic transformation of cells by Rous sarcoma virus (RSV). One of the putative substrates for the src gene product (pp60v-src) of RSV is the cytoskeletal protein vinculin, giving rise to the hypothesis that tyrosine-specific phosphorylation of vinculin disrupts adhesion plaque integrity, leading to the characteristic rounded morphology of RSV-transformed cells. We have investigated this hypothesis by analysing the properties of fibroblasts transformed by conditional and non-conditional mutants of RSV which confer different morphologies on infected cells, with respect to formation of microfilament bundles, formation of vinculin-containing adhesion plaques, the deposition of a fibronectin-containing extracellular matrix, the localization of pp60v-src and the tyrosine-specific phosphorylation of vinculin. Cells transformed by the temperature-sensitive (ts) RSV mutant LA32 cultured at 41 degrees C were morphologically normal, and contained prominent microfilament bundles and well-developed adhesion plaques. However, these cells had a fully active pp60v-src kinase, had pp60v-src concentrated in their adhesion plaques and contained vinculin which was heavily phosphorylated on tyrosine residues. Cells transformed by a recovered avian sarcoma virus, rASV 2234.3 exhibited a markedly fusiform morphology with pp60v-src concentrated in well-developed adhesion plaques and an elevation of the phosphotyrosine content of vinculin. Cells transformed by LA32 at restrictive temperature comprise morphologically normal cells, indistinguishable from untransformed CEF, yet which contain tyrosine-phosphorylated vinculin and suggest that neither tyrosine-specific phosphorylation of vinculin nor pp60v-src concentration in adhesion plaques is sufficient for the rounded morphology of RSV-transformed cells.  相似文献   

19.
20.
Substrates critical for transformation by pp60v-src remain unknown, as does the precise role of the src homology 2 (SH2) domain in this process. To continue exploring the role of the SH2 domain in pp60v-src-mediated transformation, site-directed mutagenesis was used to create mutant v-src alleles predicted to encode proteins with overall structural integrity intact but with reduced ability to bind phosphotyrosine-containing peptides. Arginine-175, which makes critical contacts in the phosphotyrosine-binding pocket, was mutated to lysine or alanine. Unexpectedly, both mutations created v-src alleles that transform chicken cells with wild-type (wt) efficiency and are reduced for transformation of rat cells; these alleles are host dependent for transformation. Additionally, these alleles resulted in a round morphological transformation of chicken cells, unlike 12 of the 13 known host-dependent src SH2 mutations that result in a fusiform morphology. Analysis of phosphopeptide binding by the mutant SH2 domains reveal that the in vitro ability to bind phosphopeptides known to have a high affinity for wt src SH2 correlates with wt (round) morphological transformation in chicken cells and in vitro ability to bind phosphopeptides known to have a low affinity for wt src SH2 correlates with rat cell transformation. These results suggest that the search for critical substrates in rat cells should be among proteins that interact with pp60v-src with low affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号