首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bax is a critical regulator of physiological cell death that increases the permeability of the outer mitochondrial membrane and facilitates the release of the so-called apoptotic factors during apoptosis. The molecular mechanism of action is unknown, but it probably involves the formation of partially lipidic pores induced by Bax. To investigate the interaction of Bax with lipid membranes and the physical changes underlying the formation of Bax pores, we used an active peptide derived from helix 5 of this protein (Bax-alpha5) that is able to induce Bax-like pores in lipid bilayers. We report the decrease of line tension due to peptide binding both at the domain interface in phase-separated lipid bilayers and at the pore edge in atomic force microscopy film-rupture experiments. Such a decrease in line tension may be a general strategy of pore-forming peptides and proteins, as it affects the energetics of the pore and stabilizes the open state.  相似文献   

2.
Epand RF  Martinou JC  Montessuit S  Epand RM 《Biochemistry》2003,42(49):14576-14582
It is known that the proapoptotic protein Bax facilitates the formation of pores in bilayers, resulting in the release of proteins from the intermitochondrial space. We demonstrate that another consequence of the interaction of Bax with membranes is an increase in the rate of lipid transbilayer diffusion. We use two independent assays for transbilayer diffusion, one involving the formation of asymmetric liposomes by placing a pyrene-labeled lipid into the outer monolayer of preformed vesicles and another assay based on the initial preparation of liposomes having an asymmetric transbilayer distribution of lipids. With both methods we find that oligomeric BaxDeltaC or full-length Bax in the presence of tBid, but not monomeric full-length Bax, strongly promotes the rate of transbilayer diffusion. Although biological membranes exhibit rates of lipid transbilayer diffusion of minutes or less, they are able to maintain an asymmetric distribution of lipids across the bilayer. In the case of mitochondria, cardiolipin is sequestered on the inner leaflet of the inner mitochondrial membrane. However, during apoptosis this lipid translocates to the outer surface of the outer mitochondrial membrane. This phenomenon must involve an increase in the rate of transbilayer diffusion. The results of the present paper demonstrate that an activated form of Bax can cause this increased rate.  相似文献   

3.
Bax is a pro-apoptotic Bcl-2 family protein. The activated Bax translocates to mitochondria, where it forms pore and permeabilizes the mitochondrial outer membrane. This process requires the BH3-only activator protein (i.e. tBid) and can be inhibited by anti-apoptotic Bcl-2 family proteins such as Bcl-xL. Here by using single molecule fluorescence techniques, we studied the integration and oligomerization of Bax in lipid bilayers. Our study revealed that Bax can bind to lipid membrane spontaneously in the absence of tBid. The Bax pore formation undergoes at least two steps: pre-pore formation and membrane insertion. The activated Bax triggered by tBid or BH3 domain peptide integrates on bilayers and tends to form tetramers, which are termed as pre-pore. Subsequent insertion of the pre-pore into membrane is highly dependent on the composition of cardiolipin in lipid bilayers. Bcl-xL can translocate Bax from membrane to solution and inhibit the pore formation. The study of Bax integration and oligomerization at the single molecule level provides new evidences that may help elucidate the pore formation of Bax and its regulatory mechanism in apoptosis.  相似文献   

4.
The Bcl-2 proapoptotic proteins Bax and Bak mediate the permeabilization of the mitochondrial outer membrane during apoptosis. Current models consider that Bax and Bak form pores at the mitochondrial outer membrane that are responsible for the release of cytochrome c and other larger mitochondrial apoptotic factors (i.e. Smac/DIABLO, AIF, and endoglycosidase G). However, the properties and nature of Bax/Bak apoptotic pores remain enigmatic. Here, we performed a detailed analysis of the membrane permeabilizing activity of Bax and Bak at the single vesicle level. We directly visualized that cBid-activated Bax and BakΔC21 can form membrane pores large enough to release not only cytochrome c, but also allophycocyanine, a protein of 104 kDa. Interestingly, the size of Bax and BakΔC21 pores is not constant, as typically observed in purely proteinaceous channels, but evolves with time and depends on protein concentration. We found that Bax and BakΔC21 formed long-lived pores, whose areas changed with the amount of Bax/BakΔC21 but not with cardiolipin concentration. Altogether, our results demonstrate that Bax and BakΔC21 follow similar mechanisms of membrane permeabilization characterized by the formation of protein-permeable pores of dynamic size, in agreement with the proteolipidic nature of these apoptotic pores.  相似文献   

5.
We have purified a fimbrial shaft protein (MrxA) of Xenorhabdus nematophila. The soluble monomeric protein lysed larval hemocytes of Helicoverpa armigera. Osmotic protection of the cells with polyethylene glycol suggested that the 17-kDa MrxA subunit makes pores in the target cell membrane. The internal diameter of the pores was estimated to be >2.9 nm. Electron microscopy confirmed the formation of pores by the fimbrial subunit. MrxA protein oligomerized in the presence of liposomes. Electrophysiological studies demonstrated that MrxA formed large, voltage-gated passive-diffusion channels in lipid bilayers.  相似文献   

6.
Using phase-separated droplet interface bilayers, we observe membrane binding and pore formation of a eukaryotic cytolysin, Equinatoxin II (EqtII). EqtII activity is known to depend on the presence of sphingomyelin in the target membrane and is enhanced by lipid phase separation. By imaging the ionic flux through individual pores in vitro, we observe that EqtII pores form predominantly within the liquid-disordered phase. We observe preferential binding of labeled EqtII at liquid-ordered/liquid-disordered domain boundaries before it accumulates in the liquid-disordered phase.  相似文献   

7.
B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax) is a member of the Bcl-2 protein family having a pivotal role in triggering cell commitment to apoptosis. Bax is latent and monomeric in the cytosol but transforms into its lethal, mitochondria-embedded oligomeric form in response to cell stress, leading to the release of apoptogenic factors such as cytochrome C. Here, we dissected the structural correlates of Bax membrane insertion while oligomerization is halted. This strategy was enabled through the use of nanometer-scale phospholipid bilayer islands (nanodiscs) the size of which restricts the reconstituted system to single Bax-molecule activity. Using this minimal reconstituted system, we captured structural correlates that precede Bax homo-oligomerization elucidating previously inaccessible steps of the core molecular mechanism by which Bcl-2 family proteins regulate membrane permeabilization. We observe that, in the presence of BH3 interacting domain death agonist (Bid) BH3 peptide, Bax monomers induce the formation of ∼3.5-nm diameter pores and significantly distort the phospholipid bilayer. These pores are compatible with promoting release of ions as well as proteinaceous components, suggesting that membrane-integrated Bax monomers in the presence of Bid BH3 peptides are key functional units for the activation of the cell demolition machinery.  相似文献   

8.
The outer membrane protein A (OmpA) of Escherichia coli is a well-known model for protein targeting and protein folding. Wild-type OmpA, isolated either from cytoplasmic inclusion bodies or from outer membranes, forms narrow pores of ∼ 80 pS in planar lipid bilayers at room temperature. The pores are well structured with narrow conductance range when OmpA is isolated using lithium dodecyl sulfate (LDS) or RapiGest surfactant but display irregular conductance when OmpA is isolated with urea or guanidine hydrochloride. Previous studies have shown that serine residues S163 and S167 of the sorting signal of OmpA (residues 163-169), i.e., the essential sequence for outer membrane incorporation, are covalently modified by oligomers of (R)-3-hydroxybutyrate (cOHB). Here we find that single-mutants S163 and S167 of OmpA, which still contain cOHB on one serine of the sorting signal, form narrow pores in planar lipid bilayers at room temperature with lower and more irregular conductance than wild-type OmpA, whereas double mutants S163:S167 and S163:V166 of OmpA, with no cOHB on the sorting signal, are unable to form stable pores in planar lipid bilayers. Our results indicate that modification of serines in the sorting signal of OmpA by cOHB in the cytoplasm enables OmpA to incorporate into lipid bilayers at room temperature as a narrow pore. They further suggest that cOHB modification may be an important factor in protein targeting and protein folding.  相似文献   

9.
Bax and Bid are proapoptotic proteins of the Bcl-2 family that regulate the release of apoptogenic factors from mitochondria. Although they localize constitutively in the cytoplasm, their apoptotic function is exerted at the mitochondrial outer membrane, and is related to their ability to form transbilayer pores. Here we report the poration activity of fragments from these two proteins, containing the first alpha-helix of a colicinlike hydrophobic hairpin (alpha-helix 5 of Bax and alpha-helix 6 of Bid). Both peptides readily bind to synthetic lipid vesicles, where they adopt predominantly alpha-helical structures and induce the release of entrapped calcein. In planar lipid membranes they form ion conducting channels, which in the case of the Bax-derived peptide are characterized by a two-stage pattern, a large conductivity and lipid-charge-dependent ionic selectivity. These features, together with the influence of intrinsic lipid curvature on the poration activity and the existence of two helical stretches of different orientations for the membrane-bound peptide, suggest that it forms mixed lipidic/peptidic pores of toroidal structure. In contrast, the assayed Bid fragment shows a markedly different behavior, characterized by the formation of discrete, steplike channels in planar lipid bilayers, as expected for a peptidic pore lined by a bundle of helices.  相似文献   

10.
Using phase-separated droplet interface bilayers, we observe membrane binding and pore formation of a eukaryotic cytolysin, Equinatoxin II (EqtII). EqtII activity is known to depend on the presence of sphingomyelin in the target membrane and is enhanced by lipid phase separation. By imaging the ionic flux through individual pores in vitro, we observe that EqtII pores form predominantly within the liquid-disordered phase. We observe preferential binding of labeled EqtII at liquid-ordered/liquid-disordered domain boundaries before it accumulates in the liquid-disordered phase.  相似文献   

11.
The major protein of the outer mitochondrial membrane of Neurospora was purified. On dodecylsulfate-containing gels it displayed a single band with an apparent molecular weight of 31 000. Reconstitution experiments with artificial lipid bilayers showed that this protein forms pores. Pore conductance was dependent on the voltage across the membrane. The protein inserted into the membrane in an oriented fashion, the membrane current being dependent on the sign of the voltage. Single pore conductance was 5nS, suggesting a diameter of 2 nm of the open pore. This mitochondrial protein shows a number of similarities to the outer membrane porins of gram-negative bacteria.  相似文献   

12.
Bax is a key regulator of apoptosis that, under cell stress, accumulates at mitochondria, where it oligomerizes to mediate the permeabilization of the mitochondrial outer membrane leading to cytochrome c release and cell death. However, the underlying mechanism behind Bax function remains poorly understood. Here, we studied the spatial organization of Bax in apoptotic cells using dual‐color single‐molecule localization‐based super‐resolution microscopy. We show that active Bax clustered into a broad distribution of distinct architectures, including full rings, as well as linear and arc‐shaped oligomeric assemblies that localized in discrete foci along mitochondria. Remarkably, both rings and arcs assemblies of Bax perforated the membrane, as revealed by atomic force microscopy in lipid bilayers. Our data identify the supramolecular organization of Bax during apoptosis and support a molecular mechanism in which Bax fully or partially delineates pores of different sizes to permeabilize the mitochondrial outer membrane.  相似文献   

13.
Membrane pores spontaneously formed by antimicrobial peptides in membranes were crystallized for the first time by manipulating the sample hydration and temperature. Neutron diffraction shows that magainins and protegrins form stable pores in fully hydrated fluid membranes. At lower hydration levels or low temperature, the membrane multilayers crystallize. In one crystalline phase, the pores in each bilayer arrange in a regular hexagonal array and the bilayers are stacked into a hexagonal ABC lattice, corresponding to the cubic close-packed structure of spheres. In another crystalline phase, the bilayers are modulated into the rippled multilamellae, corresponding to a 2D monoclinic lattice. The phase diagrams are described. Crystallization of the membrane pores provides possibilities for diffraction studies that might provide useful information on the pore structures.  相似文献   

14.
The pentraxins are a family of highly conserved plasma proteins of metazoans known to function in immune defence. The canonical members, C-reactive protein and serum amyloid P component, have been identified in arthropods and humans. Mammalian pentraxins are known to bind lipid bilayers, and a pentraxin representative from the American horseshoe crab, Limulus polyphemus, binds and permeabilizes mammalian erythrocytes. Both activities are Ca(2+)-dependent. Utilizing model liposomes and planar lipid bilayers, in the present study we have investigated the membrane-active properties of the three pentraxin representatives from Limulus and show that all of the Limulus pentraxins permeabilize lipid bilayers. Mechanistically, Limulus C-reactive protein forms transmembrane pores in asymmetric planar lipid bilayers that mimic the outer membrane of Gram-negative bacteria and exhibits a Ca(2+)-independent form of membrane binding that may be sufficient for pore formation.  相似文献   

15.
Pep-1 is a cell-penetrating peptide (CPP) with the ability to translocate across biological membranes and introduce active proteins inside cells. The uptake mechanism used by this CPP is, as yet, unknown in detail. Previous results show that such a mechanism is endocytosis-independent and suggests that physical-chemical interactions between the peptide and lipid bilayers govern the translocation mechanism. Formation of a transmembrane pore has been proposed but this issue has always remained controversial. In this work the secondary structure of pep-1 in the absence/presence of lipidic bilayers was determined by CD and ATR-FTIR spectroscopies and the occurrence of pore formation was evaluated through electrophysiological measurements with planar lipid membranes and by confocal microscopy using giant unilamellar vesicles. Despite pep-1 hydrophobic domain tendency for amphipathic α-helix conformation in the presence of lipidic bilayers, there was no evidence for membrane pores in the presence of pep-1. Furthermore, alterations in membrane permeability only occurred for high peptide/lipid ratios, which induced the complete membrane disintegration. Such observations indicate that electrostatic interactions are of first importance in the pep-1-membrane interactions and show that pores are not formed. A peptide-lipid structure is probably formed during peptide partition, which favours peptide translocation.  相似文献   

16.
Bax is a cytosolic protein that responds to various apoptotic signals by binding to the outer mitochondrial membrane, resulting in membrane permeabilization, release of cytochrome c, and caspase-mediated cell death. Currently discussed mechanisms of membrane perforation include formation of hetero-oligomeric complexes of Bax with other pro-apoptotic proteins such as Bak, or membrane insertion of multiple hydrophobic helices of Bax, or formation of lipidic pores physically aided by mitochondrial membrane-inserted proteins. There is compelling evidence provided by our and other groups indicating that the C-terminal “helix 9” of Bax mediates membrane binding and pore formation, yet the mechanism of pore forming capability of Bax C-terminus remains unclear. Here we show that a 20-amino acid peptide corresponding to Bax C-terminus (VTIFVAGVLTASLTIWKKMG) and two mutants where the two lysines are replaced with glutamate or leucine have potent membrane pore forming activities in zwitterionic and anionic phospholipid membranes. Analysis of the kinetics of calcein release from lipid vesicles allows determination of rate constants of pore formation, peptide–peptide affinities within the membrane, the oligomeric state of transmembrane pores, and the importance of the lysine residues. These data provide insight into the molecular details of membrane pore formation by a Bax-derived peptide and open new opportunities for design of peptide-based cytotoxic agents.  相似文献   

17.
Pep-1 is a cell-penetrating peptide (CPP) with the ability to translocate across biological membranes and introduce active proteins inside cells. The uptake mechanism used by this CPP is, as yet, unknown in detail. Previous results show that such a mechanism is endocytosis-independent and suggests that physical-chemical interactions between the peptide and lipid bilayers govern the translocation mechanism. Formation of a transmembrane pore has been proposed but this issue has always remained controversial. In this work the secondary structure of pep-1 in the absence/presence of lipidic bilayers was determined by CD and ATR-FTIR spectroscopies and the occurrence of pore formation was evaluated through electrophysiological measurements with planar lipid membranes and by confocal microscopy using giant unilamellar vesicles. Despite pep-1 hydrophobic domain tendency for amphipathic alpha-helix conformation in the presence of lipidic bilayers, there was no evidence for membrane pores in the presence of pep-1. Furthermore, alterations in membrane permeability only occurred for high peptide/lipid ratios, which induced the complete membrane disintegration. Such observations indicate that electrostatic interactions are of first importance in the pep-1-membrane interactions and show that pores are not formed. A peptide-lipid structure is probably formed during peptide partition, which favours peptide translocation.  相似文献   

18.
Mani R  Buffy JJ  Waring AJ  Lehrer RI  Hong M 《Biochemistry》2004,43(43):13839-13848
The interaction of a beta-hairpin antimicrobial peptide, protegrin-1 (PG-1), with various lipid membranes is investigated by (31)P, (2)H, and (13)C solid-state NMR. Mixed lipid bilayers containing anionic lipids and cholesterol are used to mimic the bacterial and mammalian cell membranes, respectively. (31)P and (2)H spectra of macroscopically oriented samples show that PG-1 induces the formation of an isotropic phase in anionic bilayers containing phosphatidylglycerol. Two-dimensional (31)P exchange experiments indicate that these isotropic lipids are significantly separate from the residual oriented lamellar bilayers, ruling out toroidal pores as the cause for the isotropic signal. (1)H spin diffusion experiments show that PG-1 is not exclusively bound to the isotropic phase but is also present in the residual oriented lamellar bilayers. This dynamic and morphological heterogeneity of the anionic membranes induced by PG-1 is supported by the fact that (13)C T(2) relaxation times measured under cross polarization and direct polarization conditions differ significantly. In contrast to the anionic membrane, the zwitterionic phosphatidylcholine (PC) membrane does not form an isotropic phase in the presence of PG-1 but shows significant orientational disorder. The addition of cholesterol to the PC bilayer significantly reduces this orientational disorder. The (13)C T(2) relaxation times of the PC lipids in the presence of both cholesterol and PG-1 suggest that the peptide may decrease the dynamic heterogeneity of the cholesterol-containing membrane. The observed selective interaction of PG-1 with different lipid membranes is consistent with its biological function and may be caused by its strong cationic and amphipathic structure.  相似文献   

19.
Qian S  Wang W  Yang L  Huang HW 《Biophysical journal》2008,94(9):3512-3522
We reconstructed the electron density profile of the alamethicin-induced transmembrane pore by x-ray diffraction. We prepared fully hydrated multiple bilayers of alamethicin-lipid mixtures in a condition where pores were present, as established previously by neutron in-plane scattering in correlation with oriented circular dichroism. At dehydrated conditions, the interbilayer distance shortened and the interactions between bilayers caused the membrane pores to become long-ranged correlated and form a periodically ordered lattice of rhombohedral symmetry. To resolve the phase problem of diffraction, we used a brominated lipid and performed multiwavelength anomalous diffraction at the bromine K edge. The result unambiguously shows that the alamethicin pore is of the barrel-stave type consisting of eight alamethicin helices. This pore structure corresponds to the stable pores detected by neutron in-plane scattering in fully hydrated fluid bilayers at high peptide/lipid ratios, which are the conditions at which alamethicin was tested for its antibacterial activity.  相似文献   

20.
It is well established that Alzheimer's amyloid beta-peptides reduce the membrane barrier to ion transport. The prevailing model ascribes the resulting interference with ion homeostasis to the formation of peptide pores across the bilayer. In this work, we examine the interaction of soluble prefibrillar amyloid beta (Abeta(1-42))-oligomers with bilayer models, observing also dramatic increases in ion current at micromolar peptide concentrations. We demonstrate that the Abeta-induced ion conductances across free-standing membranes and across substrate-supported "tethered" bilayers are quantitatively similar and depend on membrane composition. However, characteristic signatures of the molecular transport mechanism were distinctly different from ion transfer through water-filled pores, as shown by a quantitative comparison of the membrane response to Abeta-oligomers and to the bacterial toxin alpha-hemolysin. Neutron reflection from tethered membranes showed that Abeta-oligomers insert into the bilayer, affecting both membrane leaflets. By measuring the capacitance of peptide-free membranes, as well as their geometrical thicknesses, the dielectric constants in the aliphatic cores of 1,2-dioleoyl-sn-glycero-3-phosphocholine and 1,2-diphytanoyl-sn-glycero-3-phosphocholine bilayers were determined to be epsilon = 2.8 and 2.2, respectively. The magnitude of the Abeta-induced increase in epsilon indicates that Abeta-oligomers affect membranes by inducing lateral heterogeneity in the bilayers, but an increase in the water content of the bilayers was not observed. The activation energy for Abeta-induced ion transport across the membrane is at least three times higher than that measured for membranes reconstituted with alpha-hemolysin pores, E(a) = 36.8 vs. 9.9 kJ/mol, indicating that the molecular mechanisms underlying both transport processes are fundamentally different. The Abeta-induced membrane conductance shows a nonlinear dependence on the peptide concentration in the membrane. Moreover, E(a) depends on peptide concentration. These observations suggest that cooperativity and/or conformational changes of the Abeta-oligomer particles upon transfer from the aqueous to the hydrocarbon environment play a prominent role in the interaction of the peptide with the membrane. A model in which Abeta-oligomers insert into the hydrophobic core of the membrane-where they lead to a local increase in epsilon and a concomitant reduction of the membrane barrier-describes the experimental data quantitatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号