首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetyl-coenzyme A synthetase (ACS) is a plastidic enzyme that forms acetyl-coenzyme A (acetyl-CoA) from acetate and coenzyme A using the energy from ATP. Traditionally it has been thought to be the major source for the production of acetyl-CoA destined for fatty acid formation. Recent work suggested that the accumulation of lipids in developing Arabidopsis seeds was more closely correlated with the expression of pyruvate dehydrogenase complex than with the expression of ACS, suggesting that most of the carbon for fatty acid formation in the plastids of seeds comes from pyruvate rather than from acetate. To explore the role of this enzyme, Arabidopsis plants with altered amounts of ACS were generated by overexpressing its cDNA in either the sense or the antisense configuration. The resulting plants had in vitro enzyme activities that ranged from about 5% to over 400% of wild-type levels. The rate of [1-14C]acetate conversion into fatty acids was closely related to the in vitro ACS activity, showing that the amount of enzyme clearly limited the capacity of leaves to convert exogenous acetate to fatty acids. There was, however, no relationship between the ACS level and the capacity of the plants to incorporate 14CO2 into 14C-labeled fatty acids. These data strongly support the idea that, although plants can convert acetate into fatty acids, relatively little carbon moves through this pathway under normal conditions.  相似文献   

2.
Glycolysis is a ubiquitous pathway thought to be essential for the production of oil in developing seeds of Arabidopsis thaliana and oil crops. Compartmentation of primary metabolism in developing embryos poses a significant challenge for testing this hypothesis and for the engineering of seed biomass production. It also raises the question whether there is a preferred route of carbon from imported photosynthate to seed oil in the embryo. Plastidic pyruvate kinase catalyzes a highly regulated, ATP-producing reaction of glycolysis. The Arabidopsis genome encodes 14 putative isoforms of pyruvate kinases. Three genes encode subunits alpha, beta(1), and beta(2) of plastidic pyruvate kinase. The plastid enzyme prevalent in developing seeds likely has a subunit composition of 4alpha4beta(1), is most active at pH 8.0, and is inhibited by Glu. Disruption of the gene encoding the beta(1) subunit causes a reduction in plastidic pyruvate kinase activity and 60% reduction in seed oil content. The seed oil phenotype is fully restored by expression of the beta(1) subunit-encoding cDNA and partially by the beta(2) subunit-encoding cDNA. Therefore, the identified pyruvate kinase catalyzes a crucial step in the conversion of photosynthate into oil, suggesting a preferred plastid route from its substrate phosphoenolpyruvate to fatty acids.  相似文献   

3.
角果发育对某些物种的生殖发育具有重要的作用。拟南芥种子附着在角果里,角果在早期发育时进行光合作用,角果成熟后开裂散落种子之前,其细胞会经历一个衰老的过程。一般植物细胞在衰老过程中要经历膜脂降解的过程,但是角果细胞衰老过程仍未知。通过比较角果衰老过程中拟南芥野生型(WS)及与膜脂代谢密切相关的磷脂酶Dδ缺失突变体(PLDδ KO)中膜脂分子的组成情况、膜脂含量、相对含量及双键指数值,结果发现,在拟南芥角果衰老过程中:(i)质体膜脂和质体外膜脂显著下降;(ii)不同膜脂降解速率不一样,质体膜脂的降解比质体外膜脂的降解快;(iii)总的双键指数DBI下降;(iv)磷脂酶Dδ缺失突变体(PLDδ KO)的角果膜脂组成的基本水平和变化样式与野生型(WS)非常相似。结果说明,角果在衰老过程中发生了膜脂的激烈降解。据此推测:(i) 膜脂水解产物可能转移到种子中用于储藏脂三酰甘油的合成;(ii) 质体膜脂相对含量下降和质体外膜脂相对含量上升导致了总的DBI下降;(iii) PLDδ参与了角果衰老中的膜脂代谢。  相似文献   

4.
We have characterized the expression of potential acetyl-CoA-generating genes (acetyl-CoA synthetase, pyruvate decarboxylase, acetaldehyde dehydrogenase, plastidic pyruvate dehydrogenase complex and ATP-citrate lyase), and compared these with the expression of acetyl-CoA-metabolizing genes (heteromeric and homomeric acetyl-CoA carboxylase). These comparisons have led to the development of testable hypotheses as to how distinct pools of acetyl-CoA are generated and metabolized. These hypotheses are being tested by combined biochemical, genetic and molecular biological experiments, which is providing insights into how acetyl-CoA metabolism is regulated.  相似文献   

5.
Acetyl-CoA Synthesizing Enzymes in Cholinergic Nerve Terminals   总被引:9,自引:8,他引:1  
The activities of five enzymes involved in acetyl-CoA synthesis, pyruvate dehydrogenase complex, ATP citrate lyase, carnitine acetyltransferase, acetyl-CoA synthetase, and citrate synthase, were determined in normal nucleus interpeduncularis and nucleus interpeduncularis in which cholinergic terminals were removed following lesion of the habenulointerpeduncular tract. The activities of aspartate transaminase, fumarase, and GABA transaminase also were determined to compare the effect of lesion on other mitochondrial enzymes which are not linked to the biosynthesis of ACh. In normal nucleus interpeduncularis the activities of carnitine acetyltransferase and pyruvate dehydrogenase complex were higher than the activity of ChAT (choline acetyltransferase), whereas the activities of acetyl-CoA synthetase and citrate synthase were considerably lower than that of ChAT. The effect of the lesion separated the enzymes into two groups: the activities of pyruvate dehydrogenase complex, carnitine acetyltransferase, fumarase and aspartate transaminase decreased by 30--40%, whereas the activities of the other enzymes descreased 5--15%. ChAT activity was in all cases less than 15% of normal. It could be concluded that none of the acetyl-CoA synthesizing enzymes decreased to the degree that ChAT did. Only pyruvate dehydrogenase complex and carnitine acetyltransferase seem to be localized in cholinergic terminals to a significant degree. ATP citrate lyase as well as acetyl-CoA synthetase seem to have less significance in supporting acetyl-CoA formation in cholinergic nerve terminals.  相似文献   

6.
Pyruvate dehydrogenase kinase (PDHK), a negative regulator of the mitochondrial pyruvate dehydrogenase complex (mtPDC), plays a pivotal role in controlling mtPDC activity, and hence, the TCA cycle and cell respiration. Previously, the cloning of a PDHK cDNA from Arabidopsis thaliana and the effects of constitutively down-regulating its expression on plant growth and development has been reported. The first detailed analyses of the biochemical and physiological effects of partial silencing of the mtPDHK in A. thaliana using antisense constructs driven by both constitutive and seed-specific promoters are reported here. The studies revealed an increased level of respiration in leaves of the constitutive antisense PDHK transgenics; an increase in respiration was also found in developing seeds of the seed-specific antisense transgenics. Both constitutive and seed-specific partial silencing of the mtPDHK resulted in increased seed oil content and seed weight at maturity. Feeding 3-(14)C pyruvate to bolted stems containing siliques (constitutive transgenics), or to isolated siliques or immature seeds (seed-specific transgenics) confirmed a higher rate of incorporation of radiolabel into all seed lipid species, particularly triacylglycerols. Neither constitutive nor seed-specific partial silencing of PDHK negatively affected overall silique and seed development. Instead, oil and seed yield, and overall plant productivity were improved. These findings suggest that a partial reduction of the repression of the mtPDC by antisense PDHK expression can alter carbon flux and, in particular, the contribution of carbon moieties from pyruvate to fatty acid biosynthesis and storage lipid accumulation in developing seeds, implicating a role for mtPDC in fatty acid biosynthesis in seeds.  相似文献   

7.
Summary Cessation of gluconeogenesis during oocyte maturation inMisgurnus fossilis L. is accompanied by an increase of pyruvate dehydrogenase activity (EC 1.2.4.1). The activity of other enzymes of citrate and pyruvate metabolism (citrate synthetase, EC 4.1.3.7, pyruvate carboxylase, EC 6.4.1.1., malate dehydrogenase, EC 1.1.1.37) remains constant during oocyte maturation and early embryogenesis.In the course of oocyte maturation the levels of acetyl-CoA, pyruvate and citrate remained unchanged, but the level of malate and oxaloacetate underwent drastic increase. The level of phosphoenolpyruvate increased about two-fold. The mitochondrial (NAD+)/(NADH) ratio was calculated by measurement of intermediates of the glutamate dehydrogenase reaction and it was found to increase six-fold during oocyte maturation. The lower mitochondrial (NAD+)/(NADH) ratio in oocytes compared to that in the embryos is likely to be responsible for the transfer of reducing equivalents from mitochondria to cytoplasm, while in embryos transfer in the opposite direction takes place.  相似文献   

8.
9.
Methods are described for the assay of pyruvate dehydrogenase and acetyl-CoA synthetase activities in rat brain subcellular fractions. Citrate synthase and oxaloacetate serve as a trapping system in these assays. The methods permit the determination of a large number of samples of different turbidity with satisfactory precision. Highest activities of pyruvate dehydrogenase and acetyl-CoA synthetase (117.7 and 7.29 nmol/min/mg of protein, respectively) were found in rat brain mitochondria. A three times lower activity of acetyl-CoA synthetase and negligible of pyruvate dehydrogenase was found in brain cytosol.  相似文献   

10.
11.
The apicomplexan parasite Toxoplasma gondii displays some unusual localisations of carbohydrate converting enzymes, which is due to the presence of a vestigial, non-photosynthetic plastid, referred to as the apicoplast. It was recently demonstrated that the single pyruvate dehydrogenase complex (PDH) in T. gondii is exclusively localised inside the apicoplast but absent in the mitochondrion. This raises the question about expression, localisation and function of enzymes for the tricarboxylic acid (TCA)-cycle, which normally depends on PDH generated acetyl-CoA. Based on the expression and localisation of epitope-tagged fusion proteins, we show that all analysed TCA cycle enzymes are localised in the mitochondrion, including both isoforms of malate dehydrogenase. The absence of a cytosolic malate dehydrogenase suggests that a typical malate-aspartate shuttle for transfer of reduction equivalents is missing in T. gondii. We also localised various enzymes which catalyse the irreversible steps in gluconeogenesis to a cellular compartment and examined mRNA expression levels for gluconeogenesis and TCA cycle genes between tachyzoites and in vitro bradyzoites. In order to get functional information on the TCA cycle for the parasite energy metabolism, we created a conditional knock-out mutant for the succinyl-CoA synthetase. Disruption of the sixth step in the TCA cycle should leave the biosynthetic parts of the cycle intact, but prevent FADH2 production. The succinyl-CoA synthetase depletion mutant displayed a 30% reduction in growth rate, which could be restored by supplementation with 2 microM succinate in the tissue culture medium. The mitochondrial membrane potential in these parasites was found to be unaltered. The lack of a more severe phenotype suggests that a functional TCA cycle is not essential for T. gondii replication and for maintenance of the mitochondrial membrane potential.  相似文献   

12.
Lin M  Oliver DJ 《Plant physiology》2008,147(4):1822-1829
The acs1 knockout mutant that has a disruption in the plastidic acetyl-coenzyme A (CoA) synthetase (ACS; At5g36880) gene was used to explore the role of this protein and plastidic acetate metabolism in Arabidopsis (Arabidopsis thaliana). Disruption of the ACS gene decreased ACS activity by 90% and largely blocked the incorporation of exogenous (14)C-acetate and (14)C-ethanol into fatty acids. Whereas the disruption had no significant effect on the synthesis of bulk seed triacylglycerols, the acs1 plants were smaller and flowered later. This suggests that the pyruvate dehydrogenase bypass provided by the aerobic fermentation pathway that converts pyruvate to acetate and probably on to fatty acids is important to the plants during normal growth. The role of ACS in destroying fermentative intermediates is supported by the increased sensitivity of the acs1 mutant to exogenous acetate, ethanol, and acetaldehyde compared to wild-type plants. Whereas these observations suggest that flux through the aerobic fermentation pathway is important, the reason for this flux is unclear. Interestingly, acetate is able to support high rates of plant growth on medium and this growth is blocked in the acs1 mutant.  相似文献   

13.
The mechanism of inhibition of pyruvate carboxylase, pyruvate dehydrogenase, and carbamyl phosphate synthetase induced by alpha-ketoisovalerate metabolism has been investigated in isolated rat hepatocytes incubated with lactate, pyruvate, ammonia, and ornithine as substrates. Half-maximum inhibitions of flux through each of these enzyme steps were obtained with 0.3 mM alpha-ketoisovalerate. The inhibition of pyruvate carboxylase flux by alpha-ketoisovalerate was largely reversed by oleate addition, but pyruvate dehydrogenase flux was inhibited further. Inhibition of flux through pyruvate carboxylase could be attributed mainly to the fall of its allosteric activator, acetyl-CoA, with some additional effect due to inhibition by methylmalonyl-CoA. Tissue acetyl-CoA levels decrease as a result of an inhibition of the active form of pyruvate dehydrogenase. Kinetic studies with the purified pig heart pyruvate dehydrogenase complex showed that methyl-malonyl-CoA, propionyl-CoA, and isobutyryl-CoA were inhibitory, the latter noncompetitive with CoASH with an apparent Ki of 90 microM. The observed inhibition of pyruvate dehydrogenase flux correlated with increases of the acetyl-CoA/CoASH and propionyl-CoA/CoASH ratios and isobutyryl-CoA levels, while increases of the mitochondrial NADH/NAD+ ratio explained differences between the effects of alpha-ketoisovalerate and propionate. Carbamyl phosphate synthetase I purified from rat liver was shown to be inhibited directly by methylmalonyl-CoA (apparent Ki of 5 mM). Inhibition of flux through carbamyl phosphate synthetase during alpha-ketoisovalerate metabolism could be attributed both to a direct inhibitory effect of methyl-malonyl-CoA and to a diminished activation by N-acetylglutamate. Direct effects of various acyl-CoA metabolites on these key enzymes may explain symptoms of hypoglycemia and hyperammonemia observed in patients with inherited disorders of organic acid metabolism.  相似文献   

14.
15.
16.
The activities of the pyruvate dehydrogenase complex in extracts of the gutted body, head, foregut/midgut and hindgut (hindgut epithelium and microorganisms) tissues of the lower termite Coptotermes formosanus (Shiraki) were determined by measuring the [14C]-acetyl-CoA produced from [2-14C]-pyruvate and the 14CO2 produced from [1-14C]-pyruvate. The activities of pyruvate dehydrogenase, l-lactate dehydrogenase, acetyl-CoA synthetase, malate dehydrogenase (decarboxylating), and acetate kinase in the termite tissues and the hindgut also were determined. The sum (7.1 nmol/termite/h) of the pyruvate dehydrogenase complex activities in the termite tissues other than the hindgut was five times higher than the activity in the hindgut. Significant amounts of l-lactate dehydrogenase activity were found in all of the tissues. All of the tissues other than the hindgut had significant amounts of acetyl-CoA synthetase activity. Malate dehydrogenase (decarboxylating) activity was about ten times higher in the hindgut extract than in the gutted body and head extracts and the activity in the foregut/midgut extract was very low. These results indicate that acetyl-CoA for the TCA cycle is produced effectively in the tissues of the termite itself, both from pyruvate by the pyruvate dehydrogenase complex and from acetate by acetyl-CoA synthetase.  相似文献   

17.
The role of biotin-dependent enzymes in the fatty liver and kidney syndrome of young chicks was studied. Under conditions of a marginal deficiency of dietary biotin, the level of biotin in the liver has differing effects on the activities of two biotin-dependent enzymes, pyruvate carboxylase and acetyl-CoA carboxylase. The activity of acetyl-CoA carboxylase is increased, but when the dietary deficiency of biotin produces biotin levels which are below 0-8 mug/g of liver, the activity of pyruvate carboxylase may be insufficient to completely metabolize pyruvate via gluconeogenesis. There is an increase in liver size and in the activities of enzymes involved in alternate pathways for the removal of pyruvate. Blood lactate accumulates and there is increased synthesis of fatty acids, and an accumulation of palmitoleic acid; these steps are accomplished by increased activities of at least the following enzymes: acetyl-CoA carboxylase, malate dehydrogenase (decarboxylating) (NADP+) and the desaturase enzyme. When the biotin level is below 0-35 mug/g of liver and the chick is subjected to a stress, physiological defence mechanisms of the chick may be inadequate to maintain homeostasis and they finally collapse, resulting in accumulation of triacylglycerol in the liver and blood; the chick is unable to maintain blood glucose levels and death occurs, often only a few hours after the imposition of the stress.  相似文献   

18.
The biosynthesis of phosphatidylglycerol represents a central pathway in lipid metabolism in all organisms. The enzyme catalyzing the first reaction of the pathway in the plastid, glycerol-3-phosphate acyl-acyl carrier protein acyltransferase, is thought to be encoded in Arabidopsis by the ATS1 locus. A number of genetic mutants deficient in this activity have been described. However, the corresponding mutant alleles have not yet been analyzed at the molecular level and a causal relationship between the mutant phenotypes and a deficiency at the ATS1 locus has not been established. The presence in all known ats1 mutants of near wild-type amounts of phosphatidylglycerol raised the question of whether an alternative pathway of phosphatidylglycerol assembly in the plastid exists. However, detailed analysis of several independent ats1 mutant alleles revealed that all are leaky. Reduction by RNAi of ats1-1 RNA levels in the ats1-1 mutant background led to a more severe growth phenotype (small green plants and reduced seed set), but did not decrease the relative amount of phosphatidylglycerol. In contrast, when the amount of ATS2 mRNA encoding the plastidic lysophosphatidic acid acyltransferase catalyzing the second reaction of the pathway was reduced by RNAi in the ats1-1 mutant background, phosphatidylglycerol amounts decreased, leading to a growth phenotype (small pale-yellow plants) that is reminiscent of the pgp1-1 mutant deficient in a late step of plastidic phosphatidylglycerol biosynthesis. These observations indicate coordinated regulation of plastid lipid metabolism and plant development.  相似文献   

19.
Summary Growth and metabolite formation were studied as a function of oxygen feed rate, in glucose-limited chemostat cultures of Hanseniaspora uvarum K5 at a dilution rate of 0.26 h–1. Alcoholic fermentation occured at an oxygen feed rate of 80 mmol.l–1.h–1 . Below this value, pyruvate decarboxylase and alcohol dehydrogenase were present at high levels. In contrast, activities of oxidative metabolism enzymes, pyruvate dehydrogenase, aldehyde dehydrogenase and acetyl-CoA synthetase, decreased.  相似文献   

20.
1. The specific activities of fatty acid synthetase, acetyl-CoA carboxylase and pyruvate dehydrogenase were measured in rat adipose-tissue extracts in pregnancy and lactation. Fatty acid synthetase specific activity correlates very closely with the rate of fatty acid synthesis, the enzyme specific activity decreasing after mid-pregnancy in a manner very similar to the rate of fatty acid synthesis. Acetyl-CoA carboxylase specific activity also decreases dramatically after mid-pregnancy. Initial pyruvate dehydrogenase specific activity shows a decrease between 2 days pre partum and 2 days post partum, but total enzyme activity shows no significant change in the same period. 2. Immunotitrations of fatty acid synthetase and pyruvate dehydrogenase activities were carried out; the titrations showed that the change in the fatty acid synthetase activity is due to a change in the enzyme amount; the amount of pyruvate dyhydrogenase does not change. Therefore the decrease in fatty acid biosynthesis in subcutaneous and parametrial adipose tissue in late pregnancy and early lactation is associated with a decrease in the amount of at least one of the enzymes involved in fatty acid biosynthesis. The correlation of these events with known hormonal changes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号