首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence is presented that the kinesin-related ncd protein is not as processive as kinesin. In low surface density motility experiments, a dimeric ncd fusion protein behaved mechanistically more similar to non-processive myosins than to the highly processive kinesin. First, there was a critical microtubule length for motility; only microtubules longer than this critical length moved in low density ncd surfaces, which suggested that multiple ncd proteins must cooperate to move microtubules in the surface assay. Under similar conditions, native kinesin demonstrated no critical microtubule length, consistent with the behavior of a highly processive motor. Second, addition of methylcellulose to decrease microtubule diffusion decreased the critical microtubule length for motility. Also, the rates of microtubule motility were microtubule length dependent in methylcellulose; short microtubules, that interacted with fewer ncd proteins, moved more slowly than long microtubules that interacted with more ncd proteins. In contrast, short microtubules, that interacted with one or a few kinesin proteins, moved on average slightly faster than long microtubules that interacted with multiple kinesins. We conclude that a degree of processivity as high as that of kinesin, where a single dimer can move over distances on the order of one micrometer, may not be a general mechanistic feature of the kinesin superfamily. Received: 16 September 1997 / Accepted: 4 November 1997  相似文献   

2.
Origins of reversed directionality in the ncd molecular motor.   总被引:8,自引:1,他引:7       下载免费PDF全文
The head or motor domain of the ncd (non-claret disjunctional) molecular motor is 41% identical to that of kinesin, yet moves along microtubules in the opposite direction to kinesin. We show here that despite the reversed directionality of ncd, its kinetics in solution are homologous in key respects to those of kinesin. The rate limiting step, ADP release, occurs at 0.0033 s-1 at 100 mM NaCl and is accelerated approximately 1000-fold when the motor binds to microtubules. Other reaction steps are all very fast (> 0.1 s-1) compared with ADP release, and the motor is consequently paused in the ncd.ADP state until microtubule binding occurs (Kd = 2 microM), at which point ADP release is triggered and the motor locks onto the microtubule in a rigor-like state. These data identify close functional homology between the strong binding states of kinesin and ncd, and in view of this we discuss a possible mechanism for directional reversal, in which the strong binding states of ncd and kinesin are functionally identical, but the weak binding states are biased in opposite directions.  相似文献   

3.
Ncd is a microtubule minus-end directed motor of the kinesin superfamily. Previously it has been shown that ncd and kinesin motor domains share the same major binding site on microtubules. Here we report a three-dimensional EM reconstruction of negatively stained two-dimensional Zn-induced tubulin crystal sheets (Zn-sheets) decorated with the ncd motor domain at a resolution of 16 A. This work has revealed a second specific binding site for the ncd motor domain. The motor binding site on the tubulin Zn-sheets spans both alpha and beta tubulin subunits. This binding site is located at a position different from the previously identified ncd binding site on microtubules and may play a role in motor function.  相似文献   

4.
Summary The recent finding that two proteins required for proper chromosome distribution in Drosophila oocytes are related to the microtubule motor protein, kinesin, provides new insights into the forces involved in meiotic chromosome movement. ncd is a spindle motor in meiosis but may perform a different role in the early mitotic divisions of the embryo. nod, until recently, has been thought to be a component of the distributive process of chromosome segregation. The finding that nod is a kinesin protein provides an alternative explanation of the effect of mutants on nonexchange chromosomes and suggests that nonexchange chromosomes segregate with exchange chromosomes in a single process, rather than via a two-step distributive system.  相似文献   

5.
Atomic resolution three-dimensional structures of two oppositely directed kinesin motors - conventional kinesin and non-claret disjunctional (ncd) protein - are now available in their functional dimeric form. A detailed model of the microtubule has also been recently obtained by docking the 3.7 A structure of tubulin into a 20 A map of the microtubule. Recent structural studies of kinesin motors and their microtubule tracks are contributing to our current understanding of kinesin motor mechanisms.  相似文献   

6.
We used a battery of proteases to probe the footprint of microtubules on kinesin and ncd, and to search for nucleotide-induced conformational changes in these two oppositely-directed yet homologous molecular motors. Proteolytic cleavage sites were identified by N-terminal microsequencing and electrospray mass spectrometry, and then mapped onto the recently-determined atomic structures of ncd and kinesin. In both kinesin and ncd, microtubule binding shields a set of cleavage sites within or immediately flanking the loops L12, L8 and L11 and, in ncd, the loop L2. Even in the absence of microtubules, exchange of ADP for AMPPNP in the motor active site drives conformational shifts involving these loops. In ncd, a chymotryptic cleavage at Y622 in L12 is protected in the strong binding AMPPNP conformation, but cleaved in the weak binding ADP conformation. In kinesin, a thermolysin cleavage at L154 in L8 is protected in AMPPNP but cleaved in ADP. We speculate that ATP turnover in the active site governs microtubule binding by cyclically retracting or displaying the loops L8 and L12. Curiously, the retracted state of the loops corresponds to microtubule strong binding. Conceivably, nucleotide-dependent display of loops works as a reversible block on strong binding.  相似文献   

7.
The ncd protein is a dimeric, ATP-powered motor that belongs to the kinesin family of microtubule motor proteins. Here we resolve single mechanochemical cycles of recombinant, dimeric, full-length ncd, using optical-tweezers-based instrumentation and a three-bead, suspended-microtubule assay. Under conditions of limiting ATP, isolated and transient microtubule-binding events exhibit exponentially distributed and ATP-concentration-dependent lifetimes. These events do not involve consecutive steps along the microtubule, quantitatively confirming that ncd is non-processive. At low loads, a single motor molecule produces ATP-triggered working strokes of about 9 nm, which occur at the ends of binding events.  相似文献   

8.
BACKGROUND: The kinesin superfamily of microtubule-associated motor proteins are important for intracellular transport and for cell division in eukaryotes. Conventional kinesins have the motor domain at the N terminus of the heavy chain and move towards the plus end of microtubules. The ncd protein is necessary for chromosome segregation in meiosis. It belongs to a subfamily of kinesins that have the motor domain at the C terminus and move towards the minus end of microtubules. RESULTS: The crystal structure of dimeric ncd has been obtained at 2.9 A resolution from crystals with the C222(1) space group, with two independent dimers per asymmetric unit. The motor domains in these dimers are not related by crystallographic symmetry and the two ncd dimers have significantly different conformations. An alpha-helical coiled coil connects, and interacts with, the motor domains. CONCLUSIONS: The ncd protein has a very compact structure, largely due to extended interactions of the coiled coil with the head domains. Despite this, we find that the overall conformation of the ncd dimer can be rotated by as much as 10 degrees away from that of the twofold-symmetric archetypal ncd. The crystal structures of conventional kinesin and of ncd suggest a structural rationale for the reversal of the direction of movement in chimeric kinesins.  相似文献   

9.
deCastro MJ  Ho CH  Stewart RJ 《Biochemistry》1999,38(16):5076-5081
The surface immobilization methods that allowed single-molecule motility experiments with native kinesin have not worked with the ncd motor protein and other kinesin-related motors. To solve this problem, a surfactant (Pluronic F108) was chemically modified with the metal-chelating group nitrilotriacetic acid (NTA) to allow surface immobilization of histidine-tagged microtubule motors. The chelating surfactant provided a convenient and effective method for immobilization and subsequent motility experiments with a dimeric H-tagged ncd protein (H-N195). In experiments with the absorption of H-N195 to polystyrene (PS) beads coated with F108-NTA, a monolayer of H-N195 bound in the presence of Ni2+, while in the absence of Ni2+, the extent of adsorption of H-N195 to PS beads was greatly reduced. In motility experiments with H-N195 immobilized on F108-NTA-coated surfaces, microtubules moved smoothly and consistently at an average speed of 0.16 +/- 0.01 micrometer/s in the presence of Ni2+, while without Ni2+, no microtubules landed on the F108-NTA-coated surfaces. Investigation of H-N195 motility on the F108-NTA surfaces provided several indications that ncd, unlike kinesin, is not processive. First, a critical H-N195 surface density for microtubule motility of approximately 250 molecules/micrometer(2) was observed. Second, microtubule landing rates as a function of H-N195 surface density in the presence of MgATP suggested that several H-N195 molecules must cooperate in microtubule landing. Third, the ATP KM in motility assays (235 microM) was substantially higher than the ATP KM of dimeric ncd in solution (23 microM) [Foster, K. A., Correia, J. J., and Gilbert, S. P. (1998) J. Biol. Chem. 273, 35307-35318].  相似文献   

10.
Mutants of the yeast Kar3 protein are defective in nuclear fusion, or karyogamy, during mating and show slow mitotic growth, indicating a requirement for the protein both during mating and in mitosis. DNA sequence analysis predicts that Kar3 is a microtubule motor protein related to kinesin, but with the motor domain at the C-terminus of the protein rather than the N-terminus as in kinesin heavy chain. We have expressed Kar3 as a fusion protein with glutathione S-transferase (GST) and determined the in vitro motility properties of the bacterially expressed protein. The GST-Kar3 fusion protein bound to a coverslip translocates microtubules in gliding assays with a velocity of 1-2 microns/min and moves towards microtubule minus ends, unlike kinesin but like kinesin-related Drosophila ncd. Taxol-stabilized microtubules bound to GST-Kar3 on a coverslip shorten as they glide, resulting in faster lagging end, than leading end, velocities. Comparison of lagging and leading end velocities with velocities of asymmetrical axoneme-microtubule complexes indicates that microtubules shorten preferentially from the lagging or minus ends. The minus end-directed translocation and microtubule bundling of GST-Kar3 is consistent with models in which the Kar3 protein crosslinks internuclear microtubules and mediates nuclear fusion by moving towards microtubule minus ends, pulling the two nuclei together. In mitotic cells, the minus end motility of Kar3 could move chromosomes polewards, either by attaching to kinetochores and moving them polewards along microtubules, or by attaching to kinetochore microtubules and pulling them polewards along other polar microtubules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
H B McDonald  L S Goldstein 《Cell》1990,61(6):991-1000
We identified and sequenced a cDNA clone encoding a kinesin-like protein from Drosophila. The predicted product of this cDNA has a carboxy-terminal domain that is substantially similar to the motor domain of kinesin heavy chain. The amino-terminal domain is unlike that found in previously identified kinesins or kinesin-like proteins. Analyses of this new sequence suggest that the maximal motor unit in the kinesin superfamily may be as little as 350 amino acids, and that the existence of both kinesin and kinesin-like molecules must be an evolutionarily ancient feature of eukaryotes. We also tested some of the biochemical properties of the protein encoded by this cDNA and found them to be similar to those of kinesin. Finally, the clone we isolated appears to correspond to the non-claret disjunctional (ncd) gene, which when mutant causes defects in meiotic and early embryonic mitotic chromosome segregation, and whose recently determined sequence predicts a kinesin-like domain.  相似文献   

12.
The interactions of monomeric and dimeric kinesin and ncd constructs with microtubules have been investigated using cryo-electron microscopy (cryo-EM) and several biochemical methods. There is a good consensus on the structure of dimeric ncd when bound to a tubulin dimer showing one head attached directly to tubulin, and the second head tethered to the first. However, the 3D maps of dimeric kinesin motor domains are still quite controversial and leave room for different interpretations. Here we reinvestigated the microtubule binding patterns of dimeric kinesins by cryo-EM and digital 3D reconstruction under different nucleotide conditions and different motor:tubulin ratios, and determined the molecular mass of motor-tubulin complexes by STEM. Both methods revealed complementary results. We found that the ratio of bound kinesin motor-heads to alphabeta-tubulin dimers was never reaching above 1.5 irrespective of the initial mixing ratios. It appears that each kinesin dimer occupies two microtubule-binding sites, provided that there is a free one nearby. Thus the appearances of different image reconstructions can be explained by non-specific excess binding of motor heads. Consequently, the use of different apparent density distributions for docking the X-ray structures onto the microtubule surface leads to different and mutually exclusive models. We propose that in conditions of stoichiometric binding the two heads of a kinesin dimer separate and bind to different tubulin subunits. This is in contrast to ncd where the two heads remain tightly attached on the microtubule surface. Using dimeric kinesin molecules crosslinked in their neck domain we also found that they stabilize protofilaments axially, but not laterally, which is a strong indication that the two heads of the dimers bind along one protofilament, rather than laterally bridging two protofilaments. A molecular walking model based on these results summarizes our conclusions and illustrates the implications of symmetry for such models.  相似文献   

13.
We used cryo-electron microscopy and image reconstruction to investigate the structure and microtubule-binding configurations of dimeric non-claret disjunctional (ncd) motor domains under various nucleotide conditions, and applied molecular docking using ncd's dimeric X-ray structure to generate a mechanistic model for force transduction. To visualize the alpha-helical coiled-coil neck better, we engineered an SH3 domain to the N-terminal end of our ncd construct (296-700). Ncd exhibits strikingly different nucleotide-dependent three-dimensional conformations and microtubule-binding patterns from those of conventional kinesin. In the absence of nucleotide, the neck adapts a configuration close to that found in the X-ray structure with stable interactions between the neck and motor core domain. Minus-end-directed movement is based mainly on two key events: (i) the stable neck-core interactions in ncd generate a binding geometry between motor and microtubule which places the motor ahead of its cargo in the minus-end direction; and (ii) after the uptake of ATP, the two heads rearrange their position relative to each other in a way that promotes a swing of the neck in the minus-end direction.  相似文献   

14.
The structure of an ATP-bound kinesin motor domain is predicted and conformational differences relative to the known ADP-bound form of the protein are identified. The differences should be attributed to force-producing ATP hydrolysis. Candidate ATP-kinesin structures were obtained by simulated annealing, by placement of the ATP gamma-phosphate in the crystal structure of ADP-kinesin, and by interatomic distance constraints. The choice of such constraints was based on mutagenesis experiments, which identified Gly-234 as one of the gamma-phosphate sensing residues, as well as on structural comparison of kinesin with the homologous nonclaret disjunctional (ncd) motor and with G-proteins. The prediction of nucleotide-dependent conformational differences reveals an allosteric coupling between the nucleotide pocket and the microtubule binding site of kinesin. Interactions of ATP with Gly-234 and Ser-202 trigger structural changes in the motor domain, the nucleotide acting as an allosteric modifier of kinesin's microtubule-binding state. We suggest that in the presence of ATP kinesin's putative microtubule binding regions L8, L12, L11, alpha4, alpha5, and alpha6 form a face complementary in shape to the microtubule surface; in the presence of ADP, the microtubule binding face adopts a more convex shape relative to the ATP-bound form, reducing kinesin's affinity to the microtubule.  相似文献   

15.
We present a new map showing dimeric kinesin bound to microtubules in the presence of ADP that was obtained by electron cryomicroscopy and image reconstruction. The directly bound monomer (first head) shows a different conformation from one in the more tightly bound empty state. This change in the first head is amplified as a movement of the second (tethered) head, which tilts upward. The atomic coordinates of kinesin.ADP dock into our map so that the tethered head associates with the bound head as in the kinesin dimer structure seen by x-ray crystallography. The new docking orientation avoids problems associated with previous predictions; it puts residues implicated by proteolysis-protection and mutagenesis studies near the microtubule but does not lead to steric interference between the coiled-coil tail and the microtubule surface. The observed conformational changes in the tightly bound states would probably bring some important residues closer to tubulin. As expected from the homology with kinesin, the atomic coordinates of nonclaret disjunctional protein (ncd).ADP dock in the same orientation into the attached head in a map of microtubules decorated with dimeric ncd.ADP. Our results support the idea that the observed direct interaction between the two heads is important at some stages of the mechanism by which kinesin moves processively along microtubules.  相似文献   

16.
Role of the Kinesin Neck Region in Processive Microtubule-based Motility   总被引:8,自引:3,他引:5  
Kinesin is a dimeric motor protein that can move along a microtubule for several microns without releasing (termed processive movement). The two motor domains of the dimer are thought to move in a coordinated, hand-over-hand manner. A region adjacent to kinesin's motor catalytic domain (the neck) contains a coiled coil that is sufficient for motor dimerization and has been proposed to play an essential role in processive movement. Recent models have suggested that the neck enables head-to-head communication by creating a stiff connection between the two motor domains, but also may unwind during the mechanochemical cycle to allow movement to new tubulin binding sites. To test these ideas, we mutated the neck coiled coil in a 560-amino acid (aa) dimeric kinesin construct fused to green fluorescent protein (GFP), and then assayed processivity using a fluorescence microscope that can visualize single kinesin–GFP molecules moving along a microtubule. Our results show that replacing the kinesin neck coiled coil with a 28-aa residue peptide sequence that forms a highly stable coiled coil does not greatly reduce the processivity of the motor. This result argues against models in which extensive unwinding of the coiled coil is essential for movement. Furthermore, we show that deleting the neck coiled coil decreases processivity 10-fold, but surprisingly does not abolish it. We also demonstrate that processivity is increased by threefold when the neck helix is elongated by seven residues. These results indicate that structural features of the neck coiled coil, although not essential for processivity, can tune the efficiency of single molecule motility.  相似文献   

17.
Microtubule-associated motor proteins are thought to be involved in spindle formation and chromosome movements in mitosis/meiosis. We have molecularly cloned cDNAs for a gene that codes for a novel member of the kinesin family of proteins. Nucleotide sequencing reveals that the predicted gene product is a 73 kDa protein and is related to some extent to the Drosophila node gene product, which is involved in chromosomal segregation during meiosis. A sequence similar to the microtubule binding motor domain of kinesin is present in the N-terminal half of the protein, and its ability to bind to microtubules is demonstrated. Furthermore we show that its C-terminal half contains a putative nuclear localization signal similar to that of Jun and is able to bind to DNA. Accordingly, the protein was termed Kid (kinesin-like DNA binding protein). Indirect immunofluorescence studies show that Kid colocalizes with mitotic chromosomes and that it is enriched in the kinetochore at anaphase. Thus, we propose that Kid might play a role(s) in regulating the chromosomal movement along microtubules during mitosis.  相似文献   

18.
The microtubule cytoskeleton forms the scaffolding of the meiotic spindle. Kinesins, which bind to microtubules and generate force via ATP hydrolysis, are also thought to play a critical role in spindle assembly, maintenance, and function. The A. thaliana protein, ATK1 (formerly known as KATA), is a member of the kinesin family based on sequence similarity and is implicated in spindle assembly and/or maintenance. Thus, we want to determine if ATK1 behaves as a kinesin in vitro, and if so, determine the directionality of the motor activity and processivity character (the relationship between molecular "steps" and microtubule association). The results show that ATK1 supports microtubule movement in an ATP-dependent manner and has a minus-end directed polarity. Furthermore, ATK1 exhibits non-processive movement along the microtubule and likely requires at least four ATK1 motors bound to the microtubule to support movement. Based on these results and previous data, we conclude that ATK1 is a non-processive, minus-end directed kinesin that likely plays a role in generating forces in the spindle during meiosis.  相似文献   

19.
Motile kinesins are motor proteins that move unidirectionally along microtubules as they hydrolyze ATP. They share a conserved motor domain (head) which harbors both the ATP‐ and microtubule‐binding activities. The kinesin that has been studied most moves toward the microtubule (+)‐end by alternately advancing its two heads along a single protofilament. This kinesin is the subject of this review. Its movement is associated to alternate conformations of a peptide, the neck linker, at the C‐terminal end of the motor domain. Recent progress in the understanding of its structural mechanism has been made possible by high‐resolution studies, by cryo electron microscopy and X‐ray crystallography, of complexes of the motor domain with its track protein, tubulin. These studies clarified the structural changes that occur as ATP binds to a nucleotide‐free microtubule‐bound kinesin, initiating each mechanical step. As ATP binds to a head, it triggers orientation changes in three rigid motor subdomains, leading the neck linker to dock onto the motor core, which directs the other head toward the microtubule (+)‐end. The relationship between neck linker docking and the orientations of the motor subdomains also accounts for kinesin's processivity, which is remarkable as this motor protein only falls off from a microtubule after taking about a hundred steps. As tools are now available to determine high‐resolution structures of motor domains complexed to their track protein, it should become possible to extend these studies to other kinesins and relate their sequence variations to their diverse properties.  相似文献   

20.
The highly dynamic process of cell division is effected, in part, by molecular motors that generate the forces necessary for its enactment. Several members of the kinesin superfamily of motor proteins are implicated in mitosis, such as CENP-E, which plays essential roles in cell division, including association with the kinetochore to stabilize attachment of chromosomes to microtubules prior to and during their separation. Neither the functional assembly state of CENP-E nor its direction of motion along the polar microtubule are certain. To determine the mode of interaction between CENP-E and microtubules, we have used cryo-electron microscopy to visualize CENP-E motor domains complexed with microtubules and calculated a density map of the complex to 17 A resolution by combining helical and single-particle reconstruction methods. The interface between the motor domain and microtubules was modeled by docking atomic-resolution models of the subunits into the cryoEM density map. Our results support a plus end motion for CENP-E, consistent with features of the crystallographic structure. Despite considerable functional differences from the monomeric transporter kinesin KIF1A and the oppositely directed ncd kinesin, CENP-E appears to share many features of the intermolecular interactions, suggesting that differences in motor function are governed by small variations in the loops at the microtubule interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号