首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of contracture related to changes of ionic environment (ionic contracture coupling) has been studied in the slowly responding fibers of frog skeletal muscle. When deprived of external ions for 30 minutes by use of solutions of sucrose, mannitol, or glucose, the slow skeletal muscle fibers, but not the fast, develop pronounced and easily reversible contractures. Partial replacement of the non-ionic substance with calcium or sodium reduces the development of the contractures but replacement by potassium does not. The concentration of calcium necessary to prevent contracture induced by a non-ionic solution is greater than that needed to maintain relaxation in ionic solutions. To suppress the non-ionic-induced contractures to the same extent as does calcium requires several fold higher concentrations of sodium. Two types of ionic contracture coupling occur in slow type striated muscle fibers: (a) a calcium deprivation type which develops maximally at full physiological concentration of external sodium, shows a flow rate dependency for the calcium-depriving fluid, and is lessened when the sodium concentration is decreased by replacement with sucrose; (b) a sodium deprivation type which occurs maximally without external sodium, is lessened by increasing the sodium concentration, and has no flow rate dependency for ion deprivation. Both types of contracture are largely prevented by the presence of sufficient calcium. There thus seem to be calcium- and sodium-linked processes at work in the ionic contracture coupling of slow striated muscle.  相似文献   

2.
Contracture of Slow Striated Muscle during Calcium Deprivation   总被引:1,自引:1,他引:0       下载免费PDF全文
When deprived of calcium the slow striated muscle fibers of the frog develop reversible contractures in either hypertonic or isotonic solutions. While calcium deprivation continues because of a flowing calcium-free solution the muscles relax slowly and completely. Restoration of calcium during contracture relaxes the muscle promptly to initial tension. When relaxed during calcium lack the return of calcium does not change tension and the muscle stays relaxed. When contractures are induced by solutions containing small amounts of calcium relaxation does not occur or requires several hours. The rate of tension development depends upon the rate at which calcium moves outward since the contractures develop slower in low concentrations of calcium and are absent or greatly slowed in a stagnant calcium-free solution. Withdrawal of calcium prevents the contractile responses to ACh, KCl, or electrical stimulation through the nerve. Muscles return to their original excitability after calcium is restored. Origin of the contractures is unrelated to nerve activity since they are maximal during transmission failure from calcium lack, occur in denervated muscles, and are not blocked by high concentrations of d-tubocurarine, procaine, or atropine. The experiments also indicate that the contractures do not originate from repetitive activity of muscle membranes. The findings are most simply explained by relating the outward movement of calcium as a link for initiating contraction in slow type striated muscle.  相似文献   

3.
Using area under the contracture curve to quantitate contractures, the diffusion coefficient of calcium ions within the frog toe muscle during washout in a calcium-free solution and subsequent recovery after reintroduction of calcium to the bathing solution was calculated to be about 2 x 10-6 cm2/sec. The diffusion coefficient measured during washout was found to be independent of temperature or initial calcium ion concentration. During recovery it was found to decrease if the temperature was lowered. This was likely due to the repolarization occurring after the depolarizing effect of the calcium-free solution. The relation between contracture area and [Ca]o was found to be useful over a wider range than that between maximum tension and [Ca]o. The normalized contracture areas were larger at lower calcium concentrations if the contractures were produced with cold potassium solutions or if NO3 replaced Cl in the bathing solutions. Decreasing the potassium concentration of the contracture solution to 50 mM from 115 mM did not change the relation between [Ca]o and the normalized area. If the K concentration of the bathing solution was increased, the areas were decreased at lower concentrations of Ca.  相似文献   

4.
Single muscle fibers from rabbit soleus and adductor magnus and from semitendinosus muscles were peeled to remove the sarcolemma and then stimulated to release Ca2+ by (a) caffeine application or (b) ionic depolarization accomplished via substitution of choline chloride for potassium propionate at constant [K+] X [Cl-] in the bathing solution. Each stimulus, ionic or caffeine, elicited an isometric tension transient that appeared to be due to Ca2+ released from the sarcoplasmic reticulum (SR). The peak magnitude of the ionic (Cl- -induced) tension transient increased with increasing Cl- concentration. The application of ouabain to fibers after peeling had no effect on either type of tension transient. However, soaking the fibers in a ouabain solution before peeling blocked the Cl- -induced but not the caffeine-induced tension transient, which suggests that ouabain's site of action is extracellular, perhaps inside transverse tubules (TTs). Treating the peeled fibers with saponin, which should disrupt TTs to a greater extent than SR membrane, greatly reduced or eliminated the Cl- -induced tension transient without significantly altering the caffeine-induced tension transient. These results suggest that the Cl- -induced tension transient is elicited via stimulation of sealed, polarized TTs rather than via ionic depolarization of the SR.  相似文献   

5.
Calcium uptake produced by a potassium contracture in isolated frog twitch fibers was 6.7 +/- 0.8 pmol in 0.7 cm of fiber (mean +/- SEM, 21 observations) in the presence of 30 microM D600. When potassium was applied to fibers paralyzed by the combination of 30 microM D600, cold, and a prior contracture, the calcium uptake fell to 3.0 +/- 0.7 pmol (11): the fibers were soaked in 45Ca in sodium Ringer for 3 min before 45Ca, in a potassium solution, was added for 2 min; each estimate of uptake was corrected for 5 min of resting influx, measured from the same fiber (average = 2.3 +/- 0.3 pmol). The calcium influx into paralyzed fibers is unrelated to contraction. This voltage-sensitive, slowly inactivating influx, which can be blocked by 4 mM nickel, has properties similar to the calcium current described by several laboratories. The paired difference in calcium uptake between contracting and paralyzed fibers, 2.9 +/- 0.8 pmol (16), is a component of influx related to contraction. Its size varies with contracture size and it occurs after tension production: 45Ca applied immediately after contracture is taken up in essentially the same amounts as 45Ca added before contraction. This delayed uptake is probably a "reflux" refilling a binding site on the cytoplasmic side of the T membrane, which had been emptied during the prior contracture, perhaps to initiate it. We detect no component of calcium uptake related to excitation-contraction coupling occurring before or during a contracture.  相似文献   

6.
Analysis of caffeine action in single trabeculae of the frog heart   总被引:4,自引:0,他引:4  
Effects of caffeine on contractile tension and on intracellular action and resting potentials were examined in single frog heart trabeculae suspended in a rapid perfusion chamber. Trabeculae from atria responded more readily than those from ventricles and were therefore studied in greater detail. Both the contracture and twitch responses, the one obtained at high (greater than or equal to 10mM), the other at low (less than or equal to 10mM) caffeine concentrations, consisted of a transient tension rise followed by a maintained phase of lower, but still enhanced, tension. The hypothesis was tested that the transient response is due to the release of calcium from the sarcoplasmic reticulum (s.r.) whereas the maintained tension results from enhanced calcium influx through the cell surface. Support for these ideas was obtained by examining the response to step changes of external calcium and caffeine concentrations, applied in various combinations, simultaneously and in sequence. It also emerged tht the effects on twitch tension of calcium derived from (a) s.r. discharge and (b) influx are additive, to a first approximation. A test procedure for monitoring the s.r. store content was evolved to follow the accumulation of s.r. calcium after a preceding depletion. The results obtained, and others, suggest that the s.r. calcium pump can be operative in atrial heart cells and capable, after store depletion, of reabsorbing up to some 40% of calcium activating a twitch, the remainder being, presumably, extruded from the cells.  相似文献   

7.
Sodium-free contractures were studied in myocardial strips from R. pipiens with extracellular sodium (Na0+) replaced by choline chloride and extracellular calcium (Ca20+) varied with EGTA buffer. At calculated Ca02+ below 2.8 X 10(-7) mol/l, no contracture occurred in most of the experiments, even in the presence of cyanide. When Ca02+ was above 2.8 X 10(-7) mol/l, relatively short tension transients of up to 80 sec duration could be avoided if the myocardial strip was previously equilibrated for 20 min in a Na+-Ca2+-free solution. Instead, contractures developed slowly within one to several hours. The maximum contracture was dependent on Ca02+ in a dose-response-like pattern. The time-course of contracture development was not affected by verapamil, but KCN significantly increased the rate of resting tension increase. In solutions with normal Na+-Ca2+ content and even in a Na+-Ca2+-free milieu, the cellular ultrastructure was normal. Development of contracture after addition of Ca2+ to the Na+-free solution was combined with ultrastructural damage of the ventricular strip. It is concluded that Na+-free contractures depend on transsarcolemmal net-Ca2+ uptake as a sum of Na-Ca-exchange-dependent Ca2+ uptake and active sequestering of intracellular free calcium Ca2+ mediated by sarcolemmal and probably intracellular Ca2+-ATPases. The negative inotropic effect of the Ca blocker verapamil seems not to be mediated by the Na-Ca exchange.  相似文献   

8.
Metabolism and tension were examined in single fibers of the semitendinosus muscle of Rana pipiens at 15 degree C after excitation- contraction uncoupling by stretch and hypertonicity. Interrupted tetanic stimulation at 20 HZ for 150 s, of control fibers in isotonic Ringer at a rest sarcomere length (SL) of 2.3 micrometers, resulted in a steadily declining tension, stimulated glycolysis, and significantly reduced fiber phosphocreatine (PCr) and ATP concentrations. Stretching resting muscle fibers to an SL of 4.7 micrometers did not alter metabolite concentrations, but glucose-6-phosphate rose and PCr fell markedly when the stretched fibers were stimulated tetanically, although tension was absent. Immersion of untetanized fibers in 2.5 X isotonic Ringer produced a transient rise in resting tension, an increase in glucose-6-phosphate, and a significant reduction in PCr. During the transient rise in resting tension, PCr consumption per unit of tension-time integral was the same as that in fibers stimulated tetanically in isotonic Ringer. Tetanization of fibers in hypertonic solution did not further alter metabolite concentrations or produce tension. The results indicate that exposure to hypertonicity induces an increase in both tension and consumption of high-energy phosphate bonds (approximately P) in resting fibers, but stretch does not. during tetanic stimulation, stretch interferes with contraction but does not prevent activation, whereas hypertonicity inhibits activation as well as contraction.  相似文献   

9.
On exposure (E) of frog semitendinosus muscle to 400 mmol/l urea (U) in sodium chloride Ringer's solution, the tension development to isoK+ solutions decreased, while in choline chloride Ringer it increased. On quick removal (R) of urea, always a block of excitation-contraction (E-C) coupling occurred accompanied by transient or persistent swelling of fibres and a similar but definite decrease of their resting membrane potential (Fig. 2). Muscle contraction could be elicited by caffeine even after UER-treatment but then only the slow tension increase (second phase of normal caffeine contraction) occurred (Fig. 3a). The fast tension increase to caffeine (first phase) could be restored if after UER-treatment 5 mmol/l mannitol (Fig. 3b), a 20 min treatment with choline chloride (Fig. 4a) or sodium isethionate (Fig. 4b) Ringer's solution of double osmolarity were applied. Caffeine contraction could not be elicited when sodium chloride Ringer's solution of double osmolarity was used under similar conditions (Fig. 5). E-C block to isoK+ solution persisted in all these experiments. E-C coupling could partially be restored by short treatment of muscle with caffeine (Figs 6a, b).  相似文献   

10.
Sodium exchange was studied in the arterially perfused papillary muscle of the dog. Three kinetically defined phases accounted for all the myocardial sodium: phase 0 (vascular)-λo (exchange constant) = 3.6 min-1 phase 1 (interstitial)-λ1 = 0.62 min-1; phase 2 (intracellular)-λ2 < 0.020 min-1 in quiescent muscles. The phase 2 exchange rate was proportional to frequency of contraction and increased by approximately 0.004 min-1 for each 1 beat/min increment in rate in muscles demonstrating stable function. A sudden increase in frequency of contraction was followed by a marked increase in phase 2 sodium exchange if muscle function did not deteriorate. This increased exchange required 14 min to achieve a steady state. During this time active tension increased (positive staircase) and then declined to become stable as the sodium exchange stabilized. In muscles in which increased frequency of contraction produced a progressive decrease in active tension and contracture, sodium exchange failed to increase. The characteristics of sodium exchange are compared to those previously defined for calcium and potassium in the perfused dog papillary muscle. It is proposed that alteration in sodium exchange is a primary determinant of calcium and potassium movements and thereby plays a significant role in the control of myocardial contractility.  相似文献   

11.
In the presence of endothelin, there was a rapid increase in the 45Ca++ efflux from primary cultured rat vascular smooth muscle cells, both in physiological salt solution and in calcium free medium containing 2 mM EGTA. The 45Ca++ influx was not affected. The endothelin-induced, transient increase in cytosolic calcium concentration is probably mainly due to release of calcium from the intracellular store in vascular smooth muscle cells.  相似文献   

12.
The amount of carbachol (CCh)-sensitive Ca store, which was loaded during Ca contracture in Ca-depleted stomach smooth muscle of the newt, was estimated from the amplitude of the CCh contracture induced in Ca-free high K solution. This store was loaded to nearly maximum level by simultaneous application of 2.8 X 10(-6)M Ca and 113.5 mM K, while Ca contracture induced at this time was less than 10% in amplitude of control (1.8 mM Ca). When the loading was interrupted after 5 sec of 1.8 mM Ca application, the amplitude of Ca contracture reached nearly its maximum, while the loading of the store was only about 30% of that after 90 sec. Contracture induced by Ca-free high K solution immediately after the brief (10 sec) exposure of the muscle to 1.8 mM Ca was about 50% that of K contracture, while little Ca was observed to be loaded. The [K]0-Ca contracture tension relation and the [K]0-Ca loading relation showed sigmoid and linear characteristics, respectively.  相似文献   

13.
Membrane Depolarization and the Metabolism of Muscle   总被引:1,自引:0,他引:1  
The respiration of frog twitch muscles rises markedly when [K]0israised; respiration is stimulated by levels of [K]0 below thethreshold for contracture(Fenn, 1931).Respiration is also stimulatedby elevated [Rb]0 and [Cs]0 in direct relation to their abilityto depolarize the membrane. Respiration is stimulated even whenthe anions in the high [K]o solution cannot permeate the membrane.If[K]0is raised to 25 mM there is an increase in respiration whichis sustained for hours. If [K]0is 30 mM or above, there is atransitory burst of stimulated respiration followed by a declineback to the basal level. The response to elevated[K]0 can beblocked by divalent cations or by local anesthetics; the blockingagents act rapidly, probably on the cell membrane. Either extracellularcalcium or strontium is needed for a prolonged stimulation ofrespiration. Depolarization seems to increase respiration bycausing the release of calcium into the sarcoplasm. Since respirationis increased by a depolarization below the threshold for producinga contracture, respiration is a sensitive indicator of the sarcoplasmicconcentration of calcium. A model for the relation between sarcoplasmic[Ca] and membrane potential is proposed. Calcium can be releasedfrom a store in the cell, the released Ca++ entering the sarcoplasm.The store is replenished by Ca++ entering the fiber from theextracellular solution. When the membrane is depolarized, therate of release of calcium in the store is increased; at thesame time the rate at which extracellular calcium can replenishthe store is decreased.This model accounts well for the dataon respiration and also for the contractures of single musclefibers. Calcium probably acts within the cell to activate anATP-ase which causes an increase in ADP and hence an increasein respiration. Other investigators have found changes in theactivity of certain enzymes and in the permeability of the membrane;possibly these changes are also a direct response to an increasein sarcoplasmic calcium.  相似文献   

14.
Summary Correlated physiological and electron-microscopic studies were made on the source of calcium activating the contractile system (activator calcium) in dog coronary artery smooth muscle fibers. The magnitude of contracture tension induced by 100 mM K+ was dependent on external Ca2+ concentration and reduced or eliminated by factors known to reduce the Ca2+ spike or ca2+ influx. Little or no mechanical response was elicited by treatments known to cause release of intracellularly stored calcium. These results indicated that the contractile system is mainly activated by the inward movement of extracellular calcium. In accordance with the physiological experiments, electron-opaque pyroantimonate precipitate containing calcium was found in the lumina of caveolae, but not in any intracellular structures close to the plasma membrane, when the relaxed fibers were fixed in a 1% osmium tetroxide solution containing 2% potassium pyroantimonate. If the contracted fibers were fixed in the same solution, the pyroantimonate precipitate was diffusely distributed in the myoplasm in the form of numerous particles, while the precipitate in the caveolar lumina was scarcely seen. These findings are discussed in connection with the regulation of intracellular Ca2+ concentration in dog coronary artery smooth muscle.  相似文献   

15.
A comparative study of mechanical and energetic parameters of superfused muscle strips from normal pigs and malignant hyperthermia susceptible (MHS) pigs has been conducted. Phosphorus nuclear magnetic resonance spectroscopy at 80.9 MHz and mechanical measurements were used to assess muscle metabolic state. At rest, biceps femoris biopsies of MHS pigs displayed reduced phosphocreatine level, higher inorganic phosphate, and a more acidic internal pH. In normal stimulated fibers, caffeine infusion (8 or 16 mM) induced twitch potentiation and contracture while twitch tension was reduced and contracture more pronounced in malignant fibers. In normal and malignant fibers, calcium ionophore A23187 produced effects similar to those of caffeine, with the exception of twitch potentiation, which was not observed. With caffeine or A23187, the ATP level remained constant throughout the rest-stimulation-recovery protocol for normal and malignant fibers but phosphocreatine dropped to undetectable levels upon stimulation of malignant fibers. In both treatments some heterogeneity in the resonances of inorganic phosphate was observed in malignant fibers together with a more severe acidosis which might play a role in the impairment of the excitation-contraction process.  相似文献   

16.
Cardiovascular effects of carnosine   总被引:1,自引:0,他引:1  
  相似文献   

17.
The effect of artificial high sodium gradient on the rate of the myocardium contracture development during "calcium paradox" was studied in the experiments on the isolated heart of Langendorf-perfused rats. It is stated that artificial creation of a high sodium gradient decreases the rate of the myocardium contracture development. Exogenous nucleotides, activators of Na, K-ATPase, and their precursors intensified the protective action of the hypersodium medium. Phosphocreatine (100 mmol/l) had no protective effect during the "calcium paradox". However, under conditions of the high sodium gradient phosphocreatine efficiently prevented development of the contracture during the "calcium paradox". It is important to note that under analogous conditions creation of high osmosity of the solution adding 12 mmol/l of saccharose does not protect the heart from development of the myocardium contracture.  相似文献   

18.
The effect of hypertonic solutions on the tension of isolated twitch muscle fibers of the frog has been investigated. Increased tonicity up to about 1.7 times normal (1.7 T) caused a very small, graded, maintained tension increase. Above about 1.7 T a large, transient contracture response was superimposed on the small tension. The contracture response was graded with tonicity and reached a maximum at 2.5 T of 108 ± 25 mN·mm2 a third of the maximum tetanic tension in isotonic solution. Contracture tension developed with a delay which decreased with increased tonicity. The contracture threshold was lower and the delay shorter in small fibers than in large. Contractures were obtained equally well in depolarized as in polarized fibers. They were completely suppressed by 0.1–0.5 mM tetracaine. The possible mechanism responsible for the tension-inducing effect of hypertonic solutions is discussed in terms of the close similarity between the properties of these contractures and those caused by caffeine, and it is suggested that the effect is due to a release of calcium from internal stores.  相似文献   

19.
Cells of the red marine alga, Porphyra perforata, accumulate potassium and exclude sodium, chloride, and calcium. Various metabolic inhibitors including dinitrophenol, anoxia, and p-chloromercuribenzoate partially abolish the cells' ability to retain potassium and exclude sodium. Iodoacetate induces potassium loss only in the dark; reduced sulfur compounds offer protection against the effects of p-chloromercuribenzoate; dinitrophenol stimulates respiration at concentrations which cause potassium loss and sodium gain. Following exposure to anoxia potassium accumulation and sodium extrusion take place against concentration gradients. These movements are retarded by sodium cyanide, but are stimulated by light. Sodium entry, following long exposure to 0.6 M sucrose, occurs rapidly with the concentration gradient, while potassium entry against the concentration gradient takes place slowly, and is prevented by cyanide.  相似文献   

20.
In Ca-free EGTA-containing solution serotonin induced a transient contraction of rabbit pulmonary artery smooth muscle which decayed to nearly steady-state level accounted for 17.7 +/- 1.6% of original contraction in Krebs solution. Both phasic and tonic components of this contraction were effectively inhibited by verapamil and Cd2+. Caffeine induced no contraction of muscle strips if it was applied after withdrawal of serotonin. But when the sequence of these drugs application was reversed, serotonin still evoked contraction with reduced phasic component. The results obtained in these experiments suggest, that serotonin-induced contraction of pulmonary artery smooth muscle is partly (less than 20%) due to mobilization of bound calcium from at least two stores located on the opposite sides of the cell membrane. Calcium released from external store site enters the cell via receptor-operated calcium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号