共查询到20条相似文献,搜索用时 15 毫秒
1.
Transport of hepatitis B virus precore protein into the nucleus after cleavage of its signal peptide. 总被引:6,自引:10,他引:6 下载免费PDF全文
The precore and core proteins of hepatitis B virus have identical deduced amino acid sequences other than a 29-residue amino-terminal extension (precore region) on the precore protein. The first 19 of these residues serve as a signal sequence to direct the precore protein to the endoplasmic reticulum, where they are cleaved off with formation of precore protein derivative P22 for secretion. In this report, we show that P22 can alternatively be transported into the nucleus following signal peptide cleavage. Experiments with deletion mutants indicated that this nuclear transport proceeds via the cytosol and is dependent on the amino-terminal portion of P22. Thus, the hepatitis B virus precore protein is a secreted, cytosolic, and nuclear protein. 相似文献
2.
3.
Nilsson I Witt S Kiefer H Mingarro I von Heijne G 《The Journal of biological chemistry》2000,275(9):6207-6213
We have studied the membrane insertion of ProW, an Escherichia coli inner membrane protein with seven transmembrane segments and a large periplasmic N-terminal tail, into endoplasmic reticulum (ER)-derived dog pancreas microsomes. Strikingly, significant levels of N-tail translocation is seen only when a minimum of four of the transmembrane segments are present; for constructs with fewer transmembrane segments, the N-tail remains mostly nontranslocated and the majority of the molecules adopt an "inverted" topology where normally nontranslocated parts are translocated and vice versa. N-tail translocation can also be promoted by shortening of the N-tail and by the addition of positively charged residues immediately downstream of the first trasnmembrane segment. We conclude that as many as four consecutive transmembrane segments may be collectively involved in determining membrane protein topology in the ER and that the effects of downstream sequence determinants may vary depending on the size and charge of the N-tail. We also provide evidence to suggest that the ProW N-tail is translocated across the ER membrane in a C-to-N-terminal direction. 相似文献
4.
The hepatitis B virus precore protein is closely related to the nucleocapsid core protein but is processed distinctly in the cell and plays a different role in the viral cycle. Precore is addressed to the endoplasmic reticulum (ER) through a signal peptide, and the form present in the ER is the P22 protein. P22 is then cleaved in its C-terminal part to be secreted as HBe antigen. In addition, a cytosolic form of 22 kDa less characterized has been observed. Precore gene was shown to be implicated in viral persistence, but until now, the actual protein species involved has not been determined. Our work focuses on the cytosolic form of precore. Using human cells expressing precore and a convenient fractionation assay, we demonstrated that the cytosolic form is identical to the ER form and retrotransported in the cytoplasm through the ER-associated degradation pathway. This cellular machinery translocates misfolded proteins to the cytoplasm, where they are ubiquitinated on lysine residues and degraded by proteasome. We showed that precore escapes proteasome due to its low lysine content and accumulates in the cytosol. The role of this retrotransport was investigated. In the presence of precore, we found a specific redistribution of the Grp78/BiP chaperone protein to cytosol and demonstrated a specific interaction between precore and Grp78/BiP. Altogether, these data support the idea that the hepatitis B virus develops a strategy to take advantage of the ER-associated degradation pathway, allowing distinct subcellular localization and probably distinct roles for the viral precore protein. 相似文献
5.
Misfolded secretory proteins are transported across the endoplasmic reticulum (ER) membrane into the cytosol for degradation by proteasomes. A large fraction of proteasomes in a cell is associated with the ER membrane. We show here that binding of proteasomes to ER membranes is salt sensitive, ATP dependent, and mediated by the 19S regulatory particle. The base of the 19S particle, which contains six AAA-ATPases, binds to microsomal membranes with high affinity, whereas the 19S lid complex binds weakly. We demonstrate that ribosomes and proteasomes compete for binding to the ER membrane and have similar affinities for their receptor. Ribosomes bind to the protein conducting channel formed by the Sec61 complex in the ER membrane. We co-precipitated subunits of the Sec61 complex with ER-associated proteasome 19S particles, and found that proteoliposomes containing only the Sec61 complex retained proteasome binding activity. Collectively, our data suggest that the Sec61 channel is a principal proteasome receptor in the ER membrane. 相似文献
6.
A membrane component of the endoplasmic reticulum that may be essential for protein translocation. 总被引:10,自引:2,他引:10 下载免费PDF全文
We have purified a glycosylated, membrane-spanning protein of relative molecular mass approximately 34,000 (Mr approximately 34 K) from canine microsomes that appears to be essential for protein translocation across the endoplasmic reticulum (ER) as shown by the inhibitory action of antibodies directed against it and of monovalent Fab-fragments produced from them. The ER membrane contains at least as many molecules of the 34 K membrane protein as bound ribosomes. The protein can be detected immunologically in tissues of various organisms, indicating an universal function. 相似文献
7.
SEC62 encodes a putative membrane protein required for protein translocation into the yeast endoplasmic reticulum 总被引:12,自引:8,他引:12 下载免费PDF全文
《The Journal of cell biology》1989,109(6):2653-2664
Yeast sec62 mutant cells are defective in the translocation of several secretory precursor proteins into the lumen of the endoplasmic reticulum (Rothblatt et al., 1989). The deficiency, which is most restrictive for alpha-factor precursor (pp alpha F) and preprocarboxypeptidase Y, has been reproduced in vitro. Membranes isolated from mutant cells display low and labile translocation activity with pp alpha F translated in a wild-type cytosol fraction. The defect is unique to the membrane fraction because cytosol from mutant cells supports translocation into membranes from wild-type yeast. Invertase assembly is only partly affected by the sec62 mutation in vivo and is nearly normal with mutant membranes in vitro. A potential membrane location for the SEC62 gene product is supported by evaluation of the molecular clone. DNA sequence analysis reveals a 32- kD protein with no obvious NH2-terminal signal sequence but with two domains of sufficient length and hydrophobicity to span a lipid bilayer. Sec62p is predicted to display significant NH2- and COOH- terminal hydrophilic domains on the cytoplasmic surface of the ER membrane. The last 30 amino acids of the COOH terminus may form an alpha-helix with 14 lysine and arginine residues arranged uniformly about the helix. This domain may allow Sec62p to interact with other proteins of the putative translocation complex. 相似文献
8.
Köchl R Alken M Rutz C Krause G Oksche A Rosenthal W Schülein R 《The Journal of biological chemistry》2002,277(18):16131-16138
The initial step of the intracellular transport of G protein-coupled receptors, their insertion into the membrane of the endoplasmic reticulum, follows one of two different pathways. Whereas one group uses the first transmembrane domain of the mature receptor as an uncleaved signal anchor sequence for this process, a second group possesses additional cleavable signal peptides. The reason this second subset requires the additional signal peptide is not known. Here we have assessed the functional significance of the signal peptide of the endothelin B (ET(B)) receptor in transiently transfected COS.M6 cells. A green fluorescent protein-tagged ET(B) receptor mutant lacking the signal peptide was nonfunctional and retained in the endoplasmic reticulum, suggesting that it has a folding defect. To determine the defect in more detail, ET(B) receptor fragments containing the N-terminal tail, first transmembrane domain, and first cytoplasmic loop were constructed. We assessed N tail translocation across the endoplasmic reticulum membrane in the presence and absence of a signal peptide and show that the signal peptide is necessary for N tail translocation. We postulate that signal peptides are necessary for those G protein-coupled receptors for which post-translational translocation of the N terminus is impaired or blocked by the presence of stably folded domains. 相似文献
9.
A defective signal peptide tethers the floury-2 zein to the endoplasmic reticulum membrane. 总被引:4,自引:0,他引:4 下载免费PDF全文
J W Gillikin F Zhang C E Coleman H W Bass B A Larkins R S Boston 《Plant physiology》1997,114(1):345-352
The maize (Zea mays L.) floury-2 (fl2) mutation is associated with a general decrease in storage protein synthesis, altered protein body morphology, and the synthesis of a novel 24-kD alpha-zein storage protein. Unlike storage proteins in normal kernels and the majority of storage proteins in fl2 kernels, the 24-kD alpha-zein contains a signal peptide that would normally be removed during protein synthesis and processing. The expected processing site of this alpha-zein reveals a putative mutation alanine-->valine (Ala-->Val) that is not found at other junctions between signal sequences and mature proteins. To investigate the impact of such a mutation on signal peptide cleavage, we have assayed the 24-kD fl2 alpha-zein in a co-translational processing system in vitro. Translation of RNA from fl2 kernels or synthetic RNA encoding the fl2 alpha-zein in the presence of microsomes yielded a 24-kD polypeptide. A normal signal peptide sequence, generated by site-directed mutagenesis, restored the capacity of the RNA to direct synthesis of a properly processed protein in a cell-free system. Both the fl2 alpha-zein and the fl2 alpha-zein (Val-->Ala) were translocated into the lumen of the endoplasmic reticulum. The processed fl2 alpha-zein (Val-->Ala) was localized in the soluble portion of the microsomes, whereas the fl2 alpha-zein co-fractionated with the microsomal membranes. By remaining anchored to protein body membranes during endosperm maturation, the fl2 zein may thus constrain storage protein packing and perturb protein body morphology. 相似文献
10.
Production of hepatitis C virus (HCV) core protein requires the cleavages of polyprotein by signal peptidase and signal peptide
peptidase (SPP). Cleavage of signal peptide at the C-terminus of HCV core protein by SPP was characterized in this study.
The spko mutant (mutate a.a. 189–193 from ASAYQ to PPFPF) is more efficient than the A/F mutant (mutate a.a 189 and 191 from
A to F) in blocking the cleavage of signal peptide by signal peptidase. The cleavage efficiency of SPP is inversely proportional
to the length of C-terminal extension of the signal peptide: the longer the extension, the less efficiency the cleavage is.
Thus, reducing the length of C-terminal extension of signal peptide by signal peptidase cleavage could facilitate further
cleavage by SPP. The recombinant core protein fused with signal peptide from the C-terminus of p7 protein, but not those from
the C-termini of E1 and E2, could be cleaved by SPP. Therefore, the sequence of the signal peptide is important but not the
sole determinant for its cleavage by SPP. Replacement of the HCV core protein E.R.-associated domain (a.a. 120–150) with the
E.R.-associated domain (a.a.1–50) of SARS-CoV membrane protein results in the failure of cleavage of this recombinant protein
by SPP, though this protein still is E.R.-associated. This result suggests that not only E.R.-association but also specific
protein sequence is important for the HCV core protein signal peptide cleavage by SPP. Thus, our results suggest that both
sequences of the signal peptide and the E.R.-associated domain are important for the signal peptide cleavage of HCV core protein
by SPP.
Electronic Supplementary MaterialThe online version of this article (doi: ) contains supplementary material, which is available to authorized users. 相似文献
11.
Scheper W Thaminy S Kais S Stagljar I Römisch K 《The Journal of biological chemistry》2003,278(39):37998-38003
Secretory proteins are translocated across the endoplasmic reticulum (ER) membrane through a channel formed by three proteins, namely Sec61p, Sbh1p, and Sss1p (Johnson, A. E., and van Waes, M. A. (1999) Annu. Rev. Cell Dev. Biol. 15, 799-842). Sec61p and Sss1p are essential for translocation (Esnault, Y., Blondel, M. O., Deshaies, R. J., Schekman, R., and Kepes, F. (1993) EMBO J. 12, 4083-4093). Sec61p is a polytopic membrane protein that lines the protein translocation channel. The role of Sss1p is unknown. During import into the ER through the Sec61p channel, many proteins are N-glycosylated before translocation is completed. In addition, both the Sec61 channel and oligosaccharyl transferase (OST) copurify with ribosomes from rough ER, suggesting that OST is located in close proximity to the Sec61 channel (Gorlich, D., Prehn, S., Hartmann, E., Kalies, K.-U., and Rapoport, T. A. (1992) Cell 71, 489-503 and Wang, L., and Dobberstein, B. (1999) FEBS Lett. 457, 316-322). Here, we demonstrate a direct interaction between Sss1p and a subunit of OST, Wbp1p, using the split-ubiquitin system and co-immunoprecipitation. We generated mutants in the cytoplasmic domain of Sss1p that disturb the interaction with OST and are viable but display a translocation defect specific for proteins with glycosylation acceptor sites. Our data suggest that Sss1p coordinates translocation across the ER membrane and N-linked glycosylation of secretory proteins. 相似文献
12.
Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. 总被引:11,自引:0,他引:11 下载免费PDF全文
F J van Kuppeveld J G Hoenderop R L Smeets P H Willems H B Dijkman J M Galama W J Melchers 《The EMBO journal》1997,16(12):3519-3532
Digital-imaging microscopy was performed to study the effect of Coxsackie B3 virus infection on the cytosolic free Ca2+ concentration and the Ca2+ content of the endoplasmic reticulum (ER). During the course of infection a gradual increase in the cytosolic free Ca2+ concentration was observed, due to the influx of extracellular Ca2+. The Ca2+ content of the ER decreased in time with kinetics inversely proportional to those of viral protein synthesis. Individual expression of protein 2B was sufficient to induce the influx of extracellular Ca2+ and to release Ca2+ from ER stores. Analysis of mutant 2B proteins showed that both a cationic amphipathic alpha-helix and a second hydrophobic domain in 2B were required for these activities. Consistent with a presumed ability of protein 2B to increase membrane permeability, viruses carrying a mutant 2B protein exhibited a defect in virus release. We propose that 2B gradually enhances membrane permeability, thereby disrupting the intracellular Ca2+ homeostasis and ultimately causing the membrane lesions that allow release of virus progeny. 相似文献
13.
Mutants in three novel complementation groups inhibit membrane protein insertion into and soluble protein translocation across the endoplasmic reticulum membrane of Saccharomyces cerevisiae 总被引:2,自引:2,他引:2 下载免费PDF全文
We have isolated mutants that inhibit membrane protein insertion into the ER membrane of Saccharomyces cerevisiae. The mutants were contained in three complementation groups, which we have named SEC70, SEC71, and SEC72. The mutants also inhibited the translocation of soluble proteins into the lumen of the ER, indicating that they pleiotropically affect protein transport across and insertion into the ER membrane. Surprisingly, the mutants inhibited the translocation and insertion of different proteins to drastically different degrees. We have also shown that mutations in SEC61 and SEC63, which were previously isolated as mutants inhibiting the translocation of soluble proteins, also affect the insertion of membrane proteins into the ER. Taken together our data indicate that the process of protein translocation across the ER membrane involves a much larger number of gene products than previously appreciated. Moreover, different translocation substrates appear to have different requirements for components of the cellular targeting and translocation apparatus. 相似文献
14.
15.
Several approaches are currently being taken to elucidate the mechanisms and the molecular components responsible for protein targeting to and translocation across the membrane of the endoplasmic reticulum. Two experimental systems dominate the field: a biochemical system derived from mammalian exocrine pancreas, and a combined genetic and biochemical system employing the yeast, Saccharomyces cerevisiae. Results obtained in each of these systems have contributed novel, mostly non-overlapping information. Recently, much effort in the field has been dedicated to identifying membrane proteins that comprise the translocon. Membrane proteins involved in translocation have been identified both in the mammalian system, using a combination of crosslinking and reconstitution approaches, and in S. cerevisiae, by selecting for mutants in the translocation pathway. None of the membrane proteins isolated, however, appears to be homologous between the two experimental systems. In the case of the signal recognition particle, the two systems have converged, which has led to a better understanding of how proteins are targeted to the endoplasmic reticulum membrane. 相似文献
16.
Hepatitis C virus core protein uses triacylglycerols to fold onto the endoplasmic reticulum membrane
Dalila Ajjaji Kalthoum Ben M'barek Bertrand Boson Mohyeddine Omrane Ama Gassama-Diagne Magali Blaud Franois Penin Elise Diaz Bertrand Ducos Franois-Loïc Cosset Abdou Rachid Thiam 《Traffic (Copenhagen, Denmark)》2022,23(1):63-80
Lipid droplets (LDs) are involved in viral infections, but exactly how remains unclear. Here, we study the hepatitis C virus (HCV) whose core capsid protein binds to LDs but is also involved in the assembly of virions at the endoplasmic reticulum (ER) bilayer. We found that the amphipathic helix-containing domain of core, D2, senses triglycerides (TGs) rather than LDs per se. In the absence of LDs, D2 can bind to the ER membrane but only if TG molecules are present in the bilayer. Accordingly, the pharmacological inhibition of the diacylglycerol O-acyltransferase enzymes, mediating TG synthesis in the ER, inhibits D2 association with the bilayer. We found that TG molecules enable D2 to fold into alpha helices. Sequence analysis reveals that D2 resembles the apoE lipid-binding region. Our data support that TG in LDs promotes the folding of core, which subsequently relocalizes to contiguous ER regions. During this motion, core may carry TG molecules to these regions where HCV lipoviroparticles likely assemble. Consistent with this model, the inhibition of Arf1/COPI, which decreases LD surface accessibility to proteins and ER-LD material exchange, severely impedes the assembly of virions. Altogether, our data uncover a critical function of TG in the folding of core and HCV replication and reveals, more broadly, how TG accumulation in the ER may provoke the binding of soluble amphipathic helix-containing proteins to the ER bilayer. 相似文献
17.
Ribosome binding to and dissociation from translocation sites of the endoplasmic reticulum membrane 下载免费PDF全文
We have addressed how ribosome-nascent chain complexes (RNCs), associated with the signal recognition particle (SRP), can be targeted to Sec61 translocation channels of the endoplasmic reticulum (ER) membrane when all binding sites are occupied by nontranslating ribosomes. These competing ribosomes are known to be bound with high affinity to tetramers of the Sec61 complex. We found that the membrane binding of RNC-SRP complexes does not require or cause the dissociation of prebound nontranslating ribosomes, a process that is extremely slow. SRP and its receptor target RNCs to a free population of Sec61 complex, which associates with nontranslating ribosomes only weakly and is conformationally different from the population of ribosome-bound Sec61 complex. Taking into account recent structural data, we propose a model in which SRP and its receptor target RNCs to a Sec61 subpopulation of monomeric or dimeric state. This could explain how RNC-SRP complexes can overcome the competition by nontranslating ribosomes. 相似文献
18.
Miyazaki E Sakaguchi M Wakabayashi S Shigekawa M Mihara K 《The Journal of biological chemistry》2001,276(52):49221-49227
The NHE6 protein is a unique Na(+)/H(+) exchanger isoform believed to localize in mitochondria. It possesses a hydrophilic N-terminal portion that is rich in positively charged residues and many hydrophobic segments. In the present study, signal sequences in the NHE6 molecule were examined for organelle localization and membrane topogenesis. When the full-length protein was expressed in COS7 cells, it localized in the endoplasmic reticulum and on the cell surface. Furthermore, the protein was fully N-glycosylated. When green fluorescent protein was fused after the second (H2) or third (H3) hydrophobic segment, the fusion proteins were targeted to the endoplasmic reticulum (ER) membrane. The localization pattern was the same as that of fusion proteins in which green fluorescent protein was fused after H2 of NHE1. In an in vitro system, H1 behaved as a signal peptide that directs the translocation of the following polypeptide chain and is then processed off. The next hydrophobic segment (H2) halted translocation and eventually became a transmembrane segment. The N-terminal hydrophobic segment (H1) of NHE1 also behaved as a signal peptide. Cell fractionation studies using antibodies against the 15 C-terminal residues indicated that NHE6 protein localized in the microsomal membranes of rat liver cells. All of the NHE6 molecules in liver tissue possess an endoglycosidase H-resistant sugar chain. These findings indicate that NHE6 protein is targeted to the ER membrane via the N-terminal signal peptide and is sorted to organelle membranes derived from the ER membrane. 相似文献
19.
The brownian ratchet and power stroke models for posttranslational protein translocation into the endoplasmic reticulum 下载免费PDF全文
Elston TC 《Biophysical journal》2002,82(3):1239-1253
A quantitative analysis of experimental data for posttranslational translocation into the endoplasmic reticulum is performed. This analysis reveals that translocation involves a single rate-limiting step, which is postulated to be the release of the signal sequence from the translocation channel. Next, the Brownian ratchet and power stroke models of translocation are compared against the data. The data sets are simultaneously fit using a least-squares criterion, and both models are found to accurately reproduce the experimental results. A likelihood-ratio test reveals that the optimal fit of the Brownian ratchet model, which contains one fewer free parameter, does not differ significantly from that of the power stroke model. Therefore, the data considered here cannot be used to reject this import mechanism. The models are further analyzed using the estimated parameters to make experimentally testable predictions. 相似文献
20.
《Critical reviews in biochemistry and molecular biology》2013,48(3):273-288
AbstractTranslocation into the endoplasmic reticulum (ER) is the first biogenesis step for hundreds of eukaryotic secretome proteins. Over the past 30 years, groundbreaking biochemical, structural and genetic studies have delineated one conserved pathway that enables ER translocation- the signal recognition particle (SRP) pathway. However, it is clear that this is not the only pathway which can mediate ER targeting and insertion. In fact, over the past decade, several SRP-independent pathways have been uncovered, which recognize proteins that cannot engage the SRP and ensure their subsequent translocation into the ER. These SRP-independent pathways face the same challenges that the SRP pathway overcomes: chaperoning the preinserted protein while in the cytosol, targeting it rapidly to the ER surface and generating vectorial movement that inserts the protein into the ER. This review strives to summarize the various mechanisms and machineries which mediate these stages of SRP-independent translocation, as well as examine why SRP-independent translocation is utilized by the cell. This emerging understanding of the various pathways utilized by secretory proteins to insert into the ER draws light to the complexity of the translocational task, and underlines that insertion into the ER might be more varied and tailored than previously appreciated. 相似文献