首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among the pathways used by gram-negative bacteria for protein secretion, the autotransporter pathway represents a solution of impressive simplicity. Proteins are transported, independent of their nature as recombinant or native passengers, as long as the coding nucleotide sequence is inserted in frame between those of an N-terminal signal peptide and a C-terminal domain, referred to as the beta-barrel of the outer membrane translocation unit. The immunoglobulin A1 (IgA1) protease from Neisseria gonorrhoeae was the first identified member of the autotransporter family of secreted proteins. The IgA1 protease was employed in initial experiments investigating autotransporter-mediated surface display of recombinant proteins and to investigate structural and functional requirements. Various other autotransporter proteins have since been described, and the autodisplay system was developed on the basis of the natural Escherichia coli autotransporter protein AIDA-I (adhesin involved in diffuse adherence). Autodisplay has been used for the surface display of random peptide libraries to successfully screen for novel enzyme inhibitors. The autodisplay system was also used for the surface display of functional enzymes, including esterases, oxidoreductases, and electron transfer proteins. Whole E. coli cells displaying enzymes have been utilized to efficiently synthesize industrially important rare organic compounds with specific chirality. Autodisplay of epitopes on the surface of attenuated Salmonella carriers has also provided a novel way to induce immune protection after oral vaccination. This review summarizes the structural and functional features of the autodisplay system, illustrating its discovery and most recent applications. Autodisplay facilitates the export of more than 100,000 recombinant molecules per single cell and permits the oligomerization of subunits on the cell surface as well as the incorporation of inorganic prosthetic groups after transport of apoproteins onto the bacterial surface without disturbing bacterial integrity or viability. We discuss future biotechnical and biomedical applications in the light of these achievements.  相似文献   

2.
Despite the first report on the bacterial display of a recombinant peptide appeared almost 30 years ago, industrial application of cells with surface-displayed enzymes is still limited. To display an enzyme on the surface of a living cell bears several advantages. First of all, neither the substrate nor the product of the enzymatic reaction needs to cross a membrane barrier. Second, the enzyme being linked to the cell can be separated from the reaction mixture and hence the product by simple centrifugation. Transfer to a new substrate preparation results in multiple cycles of enzymatic conversion. Finally, the anchoring in a matrix, in this case, the cell envelope stabilizes the enzyme and makes it less accessible to proteolytic degradation and material adsorption resulting in continuous higher activities. These advantages in common need to balance some disadvantages before this application can be taken into account for industrial processes, e.g., the exclusion of the enzyme from the cellular metabolome and hence from redox factors or other co-factors that need to be supplied. Therefore, this digest describes the different systems in Gram-positive and Gram-negative bacteria that have been used for the surface display of enzymes so far and focuses on examples among these which are suitable for industrial purposes or for the production of valuable resources, not least in order to encourage a broader application of whole-cell biocatalysts with surface-displayed enzymes.  相似文献   

3.
Pseudomonas putida can be used as a host for the autotransporter-mediated surface display of enzymes (autodisplay), resulting in whole-cell biocatalysts with recombinant functionalities on their cell envelope. The efficiency of autotransporter-mediated secretion depends on the N-terminal signal peptide as well as on the C-terminal translocator domain of autotransporter fusion proteins. We set out to optimize autodisplay for P. putida as the host bacterium by comparing different signal peptides and translocator domains for the surface display of an esterase. The translocator domain did not have a considerable effect on the activity of the whole-cell catalysts. In contrast, by using the signal peptide of the P. putida outer membrane protein OprF, the activity was more than 12-fold enhanced to 638 mU ml−1 OD−1 compared with the signal peptide of V. cholerae CtxB (52 mU ml−1 OD−1). This positive effect was confirmed with a β-glucosidase as a second example enzyme. Here, cells expressing the protein with N-terminal OprF signal peptide showed more than fourfold higher β-glucosidase activity (181 mU ml−1 OD−1) than with the CtxB signal peptide (42 mU ml−1 OD−1). SDS-PAGE and flow cytometry analyses indicated that the increased activities correlated with an increased amount of recombinant protein in the outer membrane and a higher number of enzymes detectable on the cell surface.  相似文献   

4.
The application of enzymes as biocatalysts in industrial processes has great potential due to their outstanding stereo-, regio- and chemoselectivity. Using autodisplay, enzymes can be immobilized on the cell surface of Gram-negative bacteria such as Escherichia coli. In the present study, the surface display of an alcohol dehydrogenase (ADH) and a cyclohexanone monooxygenase (CHMO) on E. coli was investigated. Displaying these enzymes on the surface of E. coli resulted in whole-cell biocatalysts accessible for substrates without further purification. An apparent maximal reaction velocity VMAX(app) for the oxidation of cyclohexanol with the ADH whole-cell biocatalysts was determined as 59.9 mU ml−1. For the oxidation of cyclohexanone with the CHMO whole-cell biocatalysts a VMAX(app) of 491 mU ml−1 was obtained. A direct conversion of cyclohexanol to ε-caprolactone, which is a known building block for the valuable biodegradable polymer polycaprolactone, was possible by combining the two whole-cell biocatalysts. Gas chromatography was applied to quantify the yield of ε-caprolactone. 1.12 mM ε-caprolactone was produced using ADH and CHMO displaying whole-cell biocatalysts in a ratio of 1:5 after 4 h in a cell suspension of OD578nm 10. Furthermore, the reaction cascade as applied provided a self-sufficient regeneration of NADPH for CHMO by the ADH whole-cell biocatalyst.  相似文献   

5.
The rapprochement between gene physiology and protein chemistry proffered a wishful manipulation or programming of biological blueprint which we now know as recombinant DNA technology. Its premises are very many and ends are manifold. Until rather recently, the recombinant DNA technique could conceive the idea of engineering enzyme molecules by cloning and selection of the gene in question for enzyme production. At least, in principle, the process is too simple but its underlying mechanism is rather much stringent. Various experimental paradigms have been brought to work for production of enzyme at will by introducing a given gene into a high yielding system of microorganisms. It facilitates overproduction of enzymes of interest which can be implicated in several important industrial, biomedical, and environmental processes at a large scale. Such approaches of enzymes made-to-application have already started asserting tremendously in doing their appropriate jobs at the level of molecular interactions. A rapid progress in this important and interesting area of biocatalytic manipulation will certainly achieve the goal of biocatalysis-made-to-order by altering kinetic and thermodynamic components of enzyme molecules.  相似文献   

6.
Fang Y  Huang XJ  Chen PC  Xu ZK 《BMB reports》2011,44(2):87-95
Enzymatic catalysis has been pursued extensively in a wide range of important chemical processes for their unparalleled selectivity and mild reaction conditions. However, enzymes are usually costly and easy to inactivate in their free forms. Immobilization is the key to optimizing the in-service performance of an enzyme in industrial processes, particularly in the field of non-aqueous phase catalysis. Since the immobilization process for enzymes will inevitably result in some loss of activity, improving the activity retention of the immobilized enzyme is critical. To some extent, the performance of an immobilized enzyme is mainly governed by the supports used for immobilization, thus it is important to fully understand the properties of supporting materials and immobilization processes. In recent years, there has been growing concern in using polymeric materials as supports for their good mechanical and easily adjustable properties. Furthermore, a great many work has been done in order to improve the activity retention and stabilities of immobilized enzymes. Some introduce a spacer arm onto the support surface to improve the enzyme mobility. The support surface is also modified towards biocompatibility to reduce non-biospecific interactions between the enzyme and support. Besides, natural materials can be used directly as supporting materials owning to their inert and biocompatible properties. This review is focused on recent advances in using polymeric materials as hosts for lipase immobilization by two different methods, surface attachment and encapsulation. Polymeric materials of different forms, such as particles, membranes and nanofibers, are discussed in detail. The prospective applications of immobilized enzymes, especially the enzyme-immobilized membrane bioreactors (EMBR) are also discussed.  相似文献   

7.
Next to cellulose, starch is the most abundant hexose polymer in plants, an import food and feed source and a preferred substrate for the production of many industrial products. Efficient starch hydrolysis requires the activities of both α-1,4 and α-1,6-debranching hydrolases, such as endo-amylases, exo-amylases, debranching enzymes, and transferases. Although amylases are widely distributed in nature, only about 10?% of amylolytic enzymes are able to hydrolyse raw or unmodified starch, with a combination of α-amylases and glucoamylases as minimum requirement for the complete hydrolysis of raw starch. The cost-effective conversion of raw starch for the production of biofuels and other important by-products requires the expression of starch-hydrolysing enzymes in a fermenting yeast strain to achieve liquefaction, hydrolysis, and fermentation (Consolidated Bioprocessing, CBP) by a single organism. The status of engineering amylolytic activities into Saccharomyces cerevisiae as fermentative host is highlighted and progress as well as challenges towards a true CBP organism for raw starch is discussed. Conversion of raw starch by yeast secreting or displaying α-amylases and glucoamylases on their surface has been demonstrated, although not at high starch loading or conversion rates that will be economically viable on industrial scale. Once efficient conversion of raw starch can be demonstrated at commercial level, engineering of yeast to utilize alternative substrates and produce alternative chemicals as part of a sustainable biorefinery can be pursued to ensure the rightful place of starch converting yeasts in the envisaged bio-economy of the future.  相似文献   

8.
To display a protein or peptide with a distinct function at the surface of a living bacterial cell is a challenging exercise with constantly increasing impact in many areas of biochemistry and biotechnology. Among other systems in Gram-negative bacteria, the Autodisplay system provides striking advantages when used to express a recombinant protein at the surface of Escherichia coli or related bacteria. The Autodisplay system has been developed on the basis of and by exploiting the natural secretion mechanism of the AIDA-I autotransporter protein. It offers the expression of more than 105 recombinant molecules per single cell, permits the multimerization of subunits expressed from monomeric genes at the cell surface, and allows, after transport of an apoprotein to the cell surface, the incorporation of an inorganic prosthetic group without disturbing cell integrity or cell viability. Moreover, whole cells displaying recombinant proteins by Autodisplay can be subjected to high-throughput screening (HTS) methods such as ELISA or FACS, thus enabling the screening of surface display libraries and providing access to directed evolution of the recombinant protein displayed at the cell surface. In this review, the application of the Autodisplay system for the surface display of enzymes, enzyme inhibitors, epitopes, antigens, protein and peptide libraries is summarised and the perspectives of the system are discussed.  相似文献   

9.
Guanidinobenzoatase is a trypsin-like protease on the surface of cells capable of migration, for example leukaemia cells. We have used a number of fluorescent probes that are competitive inhibitors of guanidinobenzoatase to locate leukaemia cells in resin sections of kidney tissue obtained from leukaemic rats. We have demonstrated how this competitive inhibition system can be used to direct desired molecules (such as cytotoxic drugs) to these cells and to monitor the arrival of such compounds at the active site of guanidinobenzoatase. The principles developed in this study could equally well be applied to other enzymes on other cells provided suitable competitive inhibitors were designed. The presence of an enzyme on the surface of a cell can be used to direct molecules to that cell provided that these molecules contain a functional group that acts as an inhibitor for the chosen enzyme.  相似文献   

10.
The bacterial surface display method was used to selectively screen for improved variants of carboxymethyl cellulase (CMCase). A library of mutated CMCase genes generated by DNA shuffling was fused to the ice nucleation protein (Inp) gene so that the resulting fusion proteins would be displayed on the bacterial cell surface. Some cells displaying mutant proteins grew more rapidly on carboxymethyl cellulose plates than controls, forming heterogeneous colonies. In contrast, cells displaying the nonmutated parent CMCase formed uniform tiny colonies. These variations in growth rate were assumed to result from altered availability of glucose caused by differences in the activity of variant CMCases at the cell surface. Staining assays indicate that large, rapidly growing colonies have increased CMCase activity. Increased CMCase activity was confirmed by assaying the specific activities of cell extracts after the expression of unfused forms of the variant genes in the cytoplasm. The best-evolved CMCases showed about a 5- and 2.2-fold increase in activity in the fused and free forms, respectively. Sequencing of nine evolved CMCase variant genes showed that most amino acid substitutions occurred within the catalytic domain of the enzyme. These results demonstrate that the bacterial surface display of enzyme libraries provides a direct way to correlate evolved enzyme activity with cell growth rates. This technique will provide a useful technology platform for directed evolution and high-throughput screening of industrial enzymes, including hydrolases.  相似文献   

11.
The bacterial surface display method was used to selectively screen for improved variants of carboxymethyl cellulase (CMCase). A library of mutated CMCase genes generated by DNA shuffling was fused to the ice nucleation protein (Inp) gene so that the resulting fusion proteins would be displayed on the bacterial cell surface. Some cells displaying mutant proteins grew more rapidly on carboxymethyl cellulose plates than controls, forming heterogeneous colonies. In contrast, cells displaying the nonmutated parent CMCase formed uniform tiny colonies. These variations in growth rate were assumed to result from altered availability of glucose caused by differences in the activity of variant CMCases at the cell surface. Staining assays indicate that large, rapidly growing colonies have increased CMCase activity. Increased CMCase activity was confirmed by assaying the specific activities of cell extracts after the expression of unfused forms of the variant genes in the cytoplasm. The best-evolved CMCases showed about a 5- and 2.2-fold increase in activity in the fused and free forms, respectively. Sequencing of nine evolved CMCase variant genes showed that most amino acid substitutions occurred within the catalytic domain of the enzyme. These results demonstrate that the bacterial surface display of enzyme libraries provides a direct way to correlate evolved enzyme activity with cell growth rates. This technique will provide a useful technology platform for directed evolution and high-throughput screening of industrial enzymes, including hydrolases.  相似文献   

12.
Enzymes are efficient and specific catalysts for many essential reactions in biotechnological and pharmaceutical industries. Many times, the natural enzymes do not display the catalytic efficiency, stability or specificity required for these industrial processes. The current enzyme engineering methods offer solutions to this problem, but they mainly target the buried active site where the chemical reaction takes place. Despite being many times ignored, the tunnels and channels connecting the environment with the active site are equally important for the catalytic properties of enzymes. Changes in the enzymatic tunnels and channels affect enzyme activity, specificity, promiscuity, enantioselectivity and stability. This review provides an overview of the emerging field of enzyme access tunnel engineering with case studies describing design of all the aforementioned properties. The software tools for the analysis of geometry and function of the enzymatic tunnels and channels and for the rational design of tunnel modifications will also be discussed. The combination of new software tools and enzyme engineering strategies will provide enzymes with access tunnels and channels specifically tailored for individual industrial processes.  相似文献   

13.
14.
Industry has an increasing interest in the use of enzymes as environmentally friendly, highly efficient, and specific bio-catalysts. Enzymes have primarily evolved to function in aqueous environments at ambient temperature and pressure. These conditions however do not always correspond with industrial processes or applications, and only a small portion of all known enzymes are therefore suitable for industrial use. Protein engineering can sometimes be applied to convey more desirable properties to enzymes, such as increased stability, but is limited to the 20 naturally occurring amino acids or homologs thereof. Using post-production modification, which has the potential to combine desirable properties from the enzyme and the conjugated compounds, enzymes can be modified with both natural and synthetic molecules. This offers access to a myriad of possibilities for tuning the properties of enzymes. At this moment, however, the effects of post-production modification cannot yet be reliably predicted. The increasing number of applications will improve this so that the potential of this technology can be fully exploited. This review will focus on post-production modification of enzymes and its use and opportunities in industry.  相似文献   

15.
Fungal laccases are generalists biocatalysts with potential applications that range from bioremediation to novel green processes. Fuelled by molecular oxygen, these enzymes can act on dozens of molecules of different chemical nature, and with the help of redox mediators, their spectrum of oxidizable substrates is further pushed towards xenobiotic compounds (pesticides, industrial dyes, PAHs), biopolymers (lignin, starch, cellulose) and other complex molecules. In recent years, extraordinary efforts have been made to engineer fungal laccases by directed evolution and semi-rational approaches to improve their functional expression or stability. All these studies have taken advantage of Saccharomyces cerevisiae as a heterologous host, not only to secrete the enzyme but also, to emulate the introduction of genetic diversity through in vivo DNA recombination. Here, we discuss all these endeavours to convert fungal laccases into valuable biomolecular platforms on which new functions can be tailored by directed evolution.  相似文献   

16.
A very small electrode (nanobiosensor) was constructed by immobilizing enzyme (glucose oxidase or hexokinase) on the surface of the cantilever of the atomic force microscope in order to detect the absorption of glucose molecules by living cells. If glucose is present, the nanobiosensor deflects, probably due to the reaction heat evolved in the process. Nanobiosensors built with inactivated enzyme or cantilevers without immobilized enzyme were not capable of producing this type of signal (deflection). This technique will be very useful in detecting the passage of specific molecules through a cell wall (or a cell membrane for other types of cells).  相似文献   

17.
Immobilization of enzymes on some solid supports has been used to stabilize enzymes in organic solvents. In this study, we evaluated applications of genetically immobilized Rhizopus oryzae lipase displayed on the cell surface of Saccharomyces cerevisiae in organic solvents and measured the catalytic activity of the displayed enzyme as a fusion protein with alpha-agglutinin. Compared to the activity of a commercial preparation of this lipase, the activity of the new preparation was 4.4 x 10(4)-fold higher in a hydrolysis reaction using p-nitrophenyl palmitate and 3.8 x 10(4)-fold higher in an esterification reaction with palmitic acid and n-pentanol (0.2% H2O). Increased enzyme activity may occur because the lipase displayed on the yeast cell surface is stabilized by the cell wall. We used a combination of error-prone PCR and cell surface display to increase lipase activity. Of 7,000 colonies in a library of mutated lipases, 13 formed a clear halo on plates containing 0.2% methyl palmitate. In organic solvents, the catalytic activity of 5/13 mutants was three- to sixfold higher than that of the original construct. Thus, yeast cells displaying the lipase can be used in organic solvents, and the lipase activity may be increased by a combination of protein engineering and display techniques. Thus, this immobilized lipase, which is more easily prepared and has higher activity than commercially available free and immobilized lipases, may be a practical alternative for the production of esters derived from fatty acids.  相似文献   

18.
Immunohistochemistry is a powerful investigative tool that can provide researchers with important supplemental information to the routine morphological assessment of musculo-skeletal connective tissues in health and disease and also during tissue repair and regeneration. A wide variety of antibodies (both monoclonal and polyclonal) are now available from commercial and non-commercial sources that recognise the major structural and soluble components of cellular and extracellular matrix compartments. These include antibodies towards the major collagen and proteoglycan species and their metabolites, glycosaminoglycans, glycoproteins, enzymes, enzyme generated neo-epitopes, growth factors, cytokines and related signalling molecules. In addition, cell surface markers, cytoskeletal components and many other cytoplasmic and nuclear proteins, too numerous to mention, can also be detected. When allied with high resolution imaging modalities (e.g. confocal laser scanning microscopy) immunohistochemistry thus has the potential to reveal a wealth of macromolecular information about the complex three-dimensional composition and organisation of cellular and extracellular matrix compartments in many different connective tissue types. These technologies can also be used to quantify signal intensities and thereby facilitate numerical computation of image data.  相似文献   

19.
The movement of enzymes along the surfaces of biopolymers containing enzyme-susceptible sites can be described as a lateral diffusion process characterized by an apparent diffusion coefficient [E. Katchalski-Katzir, J. Rishpon, E. Sahar, R. Lamed, and Y. I. Henis (1985) Biopolymers 24 , 257–277]. Studies on the diffusion of enzymes on biopolymer substrates can therefore provide important information on the mechanism of enzyme–biopolymer interaction. For this reason, the motion of fluorescently labeled β-amylase [α-D -(1 → 4)glucan maltohydrolase; E.C. 3.2.1.2] on the surface of starch gels was studied by fluorescence photobleaching recovery. The results indicate that the motion of β-amylase on the surface of the gel substrate occurs by both lateral diffusion along the surface (over micron distances) and exchange between bound and free enzyme molecules in the solution covering the gel, and that the two processes occur concomitantly and in a random manner. Surface diffusion also appears an important process with respect to the action of the enzyme on the substrate sites, since this component of the motion disappears upon inactivation of the enzyme, leaving only exchange to contribute to the measured motion.  相似文献   

20.
Enzyme-linked immunosorbent assay (ELISA) is a common tool to test human sera on an antibody reaction against a specific antigen. The 60-kDa Ro/SS-A antigen for autoantibodies can be found in sera from systemic lupus erythematosus (SLE) patients. As in the case of 60-kDa Ro/SS-A, antigens used in ELISAs are recombinantly expressed in Escherichia coli and time-consuming purification steps are needed to get the proteins. To avoid these disadvantages, 60-kDa Ro/SS-A was expressed on the surface of E. coli using autodisplay, an efficient surface display system. Cells displaying 60-kDa Ro/SS-A on the surface were applied as an antigen source instead of the purified antigen. In total, 39 patients and 30 control sera were screened on a 60-kDa Ro/SS-A antibody reaction. To eliminate antibodies against native E. coli, human sera were preabsorbed with E. coli cells prior to the assay. The new ELISA protocol (surface display ELISA [SD-ELISA]) using E. coli with autodisplayed 60-kDa Ro/SS-A showed a sensitivity of 86.67% and a specificity of 83.33% by a cutoff value of 0.28. Our results show that autodisplay provides simple, rapid, and cheap access to human antigens for an ELISA to screen human sera against specific antibody reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号