首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
An essential protein, DnaA, binds to 9-bp DNA sites within the origin of replication oriC. These binding events are prerequisite to forming an enigmatic nucleoprotein scaffold that initiates replication. The number, sequences, positions, and orientations of these short DNA sites, or DnaA boxes, within the oriCs of different bacteria vary considerably. To investigate features of DnaA boxes that are important for binding Mycobacterium tuberculosis DnaA (MtDnaA), we have determined the crystal structures of the DNA binding domain (DBD) of MtDnaA bound to a cognate MtDnaA-box (at 2.0 Å resolution) and to a consensus Escherichia coli DnaA-box (at 2.3 Å). These structures, complemented by calorimetric equilibrium binding studies of MtDnaA DBD in a series of DnaA-box variants, reveal the main determinants of DNA recognition and establish the [T/C][T/A][G/A]TCCACA sequence as a high-affinity MtDnaA-box. Bioinformatic and calorimetric analyses indicate that DnaA-box sequences in mycobacterial oriCs generally differ from the optimal binding sequence. This sequence variation occurs commonly at the first 2 bp, making an in vivo mycobacterial DnaA-box effectively a 7-mer and not a 9-mer. We demonstrate that the decrease in the affinity of these MtDnaA-box variants for MtDnaA DBD relative to that of the highest-affinity box TTGTCCACA is less than 10-fold. The understanding of DnaA-box recognition by MtDnaA and E. coli DnaA enables one to map DnaA-box sequences in the genomes of M. tuberculosis and other eubacteria.  相似文献   

5.
The regulators of Mycobacterium tuberculosis DNA replication are largely unknown. Here, we demonstrate that in synchronously replicating M. tuberculosis, MtrA access to origin of replication (oriC) is enriched in the post‐replication (D) period. The increased oriC binding results from elevated MtrA phosphorylation (MtrA~P) as evidenced by reduced expression of dnaN, dnaA and increased expression of select cell division targets. Overproduction of gain‐of‐function MtrAY102C advanced the MtrA oriC access to the C period, reduced dnaA and dnaN expression, interfered with replication synchrony and compromised cell division. Overproduction of wild‐type (MtrA+) or phosphorylation‐defective MtrAD56N did not promote oriC access in the C period, nor affected cell cycle progression. MtrA interacts with DnaA signaling a possibility that DnaA helps load MtrA on oriC. Therefore, oriC sequestration by MtrA~P in the D period may normally serve to prevent untimely initiations and that DnaA–MtrA interactions may facilitate regulated oriC replication. Finally, despite the near sequence identity of MtrA in M. smegmatis and M. tuberculosis, the M. smegmatis oriC is not MtrA‐target. We conclude that M. tuberculosis oriC has evolved to be regulated by MtrA and that cell cycle progression in this organisms are governed, at least in part, by oscillations in the MtrA~P levels.  相似文献   

6.
The iron-dependent regulator (IdeR) protein in Mycobacterium tuberculosis, and its better characterized homologue, the diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae, are iron-dependent regulatory proteins that control gene expression in response to iron availability in bacteria. IdeR regulates several genes required for iron uptake and storage including those involved in the synthesis of transition metal chelators called siderophores that are linked to the M. tuberculosis virulence. In this study, the metal ion and binding affinities for IdeR binding to an fxbA operator duplex DNA were estimated using fluorescence assays. The Fe(2+), Co(2+), and Ni(2+) affinities of the two metal ion binding sites in IdeR that are involved in the activation of the regulator DNA binding process in vitro were independently estimated. Binding to the two metal ion binding sites is apparently cooperative and the two affinities differ significantly. Occupation of the first metal ion binding site causes dimerization of IdeR, and the metal ion affinity is about 4 microM for Ni(2+) and much less for Fe(2+) and Co(2+). Binding of the second metal ion fully activates IdeR for binding to the fxbA operator. The equilibrium metal ion dissociation constants for IdeR-fxbA operator binding are approximately 9 microM for Fe(2+), 13 microM for Ni(2+), and 23 microM for Co(2+). Interestingly, the natural IdeR cofactor, Fe(2+), shows high affinities toward both binding sites. These results provide insight into the possible roles for each metal binding site in IdeR activation.  相似文献   

7.
The devR-devS two-component system of Mycobacterium tuberculosis was identified earlier and partially characterized in our laboratory. A devR::kan mutant of M. tuberculosis was constructed by allelic exchange. The devR mutant strain showed reduced cell-to-cell adherence in comparison to the parental strain in laboratory culture media. This phenotype was reversed on complementation with a wild-type copy of devR. The devR mutant and parental strains grew at equivalent rates within human monocytes either in the absence or in the presence of lymphocytic cells. The expression of DevR was not modulated upon entry of M. tuberculosis into human monocytes. However, guinea pigs infected with the mutant strain showed a significant decrease in gross lesions in lung, liver and spleen; only mild pathological changes in liver and lung; and a nearly 3 log lower bacterial burden in spleen compared to guinea pigs infected with the parental strain. Our results suggest that DevR is required for virulence in guinea pigs but is not essential for entry, survival and multiplication of M. tuberculosis within human monocytes in vitro. The attenuation in virulence of the devR mutant in guinea pigs together with DevR-DevS being a bona fide signal transduction system indicates that DevR plays a critical and regulatory role in the adaptation and survival of M. tuberculosis within tissues.  相似文献   

8.
9.
Molecular Biology Reports - Tuberculosis (TB) remains a prominent health concern worldwide. Besides extensive research and vaccinations available, attempts to control the pandemic are cumbersome...  相似文献   

10.
分子流行病学是研究结核分枝杆菌传播和种群进化的有力工具。特别是近年来建立起来的单核苷酸多态性分型方法,能将结核分枝杆菌临床菌株分为三大家族,并且确立其种系发生关系。研究表明,不同进化分支上的结核分枝杆菌在不同的国家和地区流行,不同基因型菌株的致病性和传播力不尽相同。如细胞和动物模型都证明在东亚流行的北京基因型菌株比其他基因型菌株具有更高的毒力,能抑制宿主的免疫反应。本文综述近年来在结核分枝杆菌进化、分型及菌株致病性方面的研究成果。  相似文献   

11.
12.
13.
14.
15.
16.
17.
Mutation in mce operons attenuates Mycobacterium tuberculosis virulence   总被引:3,自引:0,他引:3  
On the Mycobacterium tuberculosis genome there are four mce operons, all of which are similar in sequence and organization, and code for putatively exported proteins. To investigate whether Mce proteins are essential for virulence, we generated knock-out mutants in mce1, mce2 and mce3 operons of M. tuberculosis and evaluated their ability to multiply in a mammalian host. The allelic replacement was confirmed in each mutant strain by Southern blotting. RT-PCR experiments demonstrated the lack of in vitro expression of mutated genes in Deltamce1 and Deltamce2 mutants. On the other hand, no expression of mce3 was detected in either the wild-type or mutant strains. Similar doubling time and growth characteristics in in vitro culture were observed for mutants and parental strains. The intratracheal route was used to infect BALB/c mice with the Deltamce3, Deltamce2 and Deltamce1 mutants. Ten weeks after infection, all mice infected with the Deltamce mutants survived, while those infected with the wild-type strain died. This long survival correlated with very low counts of colony-forming units (CFU) in the lungs. Deltamce1-infected mice developed very few and small granulomas, while animals infected with Deltamce3 or Deltamce2 mutants showed delayed granuloma formation. Mice infected with Deltamce1 did not develop pneumonia, while animals infected with Deltamce3 and Deltamce2 mutants showed small pneumonic patches. In spleens, bacterial counts of mutant strains were less reduced than in lungs, compared with those of wild-type. In contrast, no such attenuation was observed when the intraperitoneal route was used for infection. Moreover, Deltamce1 mutants appear to be more virulent in lungs after intraperitoneal inoculation. In conclusion, mce operons seem to affect the virulence of M. tuberculosis in mice, depending on the route of infection. Hypotheses are discussed to explain this last issue. Thus, mutants in these genes seem to be good candidates for vaccine testing.  相似文献   

18.
Recent reports have indicated that cholesterol plays a crucial role during the uptake of mycobacteria by macrophages. However, the significance of cholesterol modification enzymes encoded by Mycobacterium tuberculosis for bacterial pathogenicity remains unknown. Here, the authors explored whether the well-known cholesterol modification enzyme, cholesterol oxidase (ChoD), is important for virulence of the tubercle bacillus. Homologous recombination was used to replace the choD gene from the M. tuberculosis genome with a nonfunctional copy. The resultant mutant (delta choD) was attenuated in peritoneal macrophages. No attenuation in macrophages was observed when the same strain was complemented with an intact choD gene controlled by a heat shock promoter (delta choDP(hsp)choD). The mice infection experiments confirm the significance of ChoD in the pathogenesis of M. tuberculosis.  相似文献   

19.
Lipoproteins are a subgroup of secreted bacterial proteins characterized by a lipidated N-terminus, processing of which is mediated by the consecutive activity of prolipoprotein diacylglyceryl transferase (Lgt) and lipoprotein signal peptidase (LspA). The study of LspA function has been limited mainly to non-pathogenic microorganisms. To study a potential role for LspA in the pathogenesis of bacterial infections, we have disrupted lspA by allelic replacement in Mycobacterium tuberculosis, one of the world's most devastating pathogens. Despite the presence of an impermeable lipid outer layer, it was found that LspA was dispensable for growth under in vitro culture conditions. In contrast, the mutant was markedly attenuated in virulence models of tuberculosis. Our findings establish lipoprotein metabolism as a major virulence determinant of tuberculosis and define a role for lipoprotein processing in bacterial pathogenesis. In addition, these results hint at a promising new target for therapeutic intervention, as a highly specific inhibitor of bacterial lipoprotein signal peptidases is available.  相似文献   

20.
OmpR, a response regulator of the EnvZ/OmpR two-component system (TCS), controls the reciprocal regulation of two porin proteins, OmpF and OmpC, in bacteria. During signal transduction, OmpR (OmpR-FL) undergoes phosphorylation at its conserved Asp residue in the N-terminal receiver domain (OmpRn) and recognizes the promoter DNA from its C-terminal DNA-binding domain (OmpRc) to elicit an adaptive response. Apart from that, OmpR regulates many genes in Escherichia coli and is important for virulence in several pathogens. However, the molecular mechanism of the regulation and the structural basis of OmpR–DNA binding is still not fully clear. In this study, we presented the crystal structure of OmpRc in complex with the F1 region of the ompF promoter DNA from E. coli. Our structural analysis suggested that OmpRc binds to its cognate DNA as a homodimer, only in a head-to-tail orientation. Also, the OmpRc apo-form showed a unique domain-swapped crystal structure under different crystallization conditions. Biophysical experimental data, such as NMR, fluorescent polarization and thermal stability, showed that inactive OmpR-FL (unphosphorylated) could bind to promoter DNA with a weaker binding affinity as compared with active OmpR-FL (phosphorylated) or OmpRc, and also confirmed that phosphorylation may only enhance DNA binding. Furthermore, the dimerization interfaces in the OmpRc–DNA complex structure identified in this study provide an opportunity to understand the regulatory role of OmpR and explore the potential for this “druggable” target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号