共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The aim of this study was to analyze the effect of high dietary Fe on liver antioxidant status in mice fed a corn-oil-enriched
diet. Male Balb/c mice were fed for 3 wk with a standard diet enriched with 5% by weight of corn oil with adequate Fe (FCO
diet) or supplemented with 1% carbonyl Fe (FCOFe diet). The control group was fed a standard diet. The high-Fe diet induced
a twofold increase of hepatic Fe level. However, an increase of thymic Fe level has been induced solely by dietary fat. The
hepatic copper (Cu) level slightly decreased in the FCO diet. In the spleen, the high-Fe diet-induced increase of Fe level
was negatively correlated with the Cu level. The antioxidant status was influenced by both dietary fat and Fe. Mice fed corn-oil-enriched
diets had a higher concentration of thiobarbituric acid-reactive substances (TBARS), with a greater increase in the FCOFe
diet. Fatty acid analysis showed decreased n−3 and n−6/n−3 ratio, particularly in the FCOFe diet. Hepatic Cu/Zn superoxide
dismutase (CuZn-SOD) activity was decreased in FCO diet, and Fe supplementation caused a further decrease in the enzyme activity.
These results suggest that feeding with corn oil-enriched diet increases oxidative damage by decreasing antioxidant enzyme
defense. The high-Fe diet additionally affects the antioxidant defense system, further increasing the tissue's susceptibility
to lipid peroxidation. Additionally, both corn-oil- and Fe-enriched diets have increased the Cu requirement in mice. 相似文献
3.
4.
Oxidative DNA damage induced by toluene is involved in its male reproductive toxicity 总被引:4,自引:0,他引:4
Nakai N Murata M Nagahama M Hirase T Tanaka M Fujikawa T Nakao N Nakashima K Kawanishi S 《Free radical research》2003,37(1):69-76
Toluene is widely used as an organic solvent in various industries and commercial products. Recent investigations have shown that toluene may induce male reproductive dysfunctions and carcinogenicity. To clarify whether the toxicity results from the interference of endocrine systems or direct damage to reproductive organs, we examined the effects of toluene on the male reproductive system in rats, comparing to those of diethylstilbestrol (DES), a potent synthetic estrogen. Toluene (50, 500 mg/kg) or DES (2 mg/kg) injected subcutaneously to male Sprague-Dawley rats once a day for 10 days decreased the epididymal sperm counts and the serum concentrations of testosterone. The mRNA level for gonadotropin-releasing hormone receptor in the pituitary was decreased by DES, but not by toluene. On the contrary, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation in testes, the biological marker for oxidative DNA damage, was increased by toluene but not by DES. These results suggest that toluene induces reproductive toxicity via direct oxidative damage of spermatozoa, whereas DES affects endocrine systems via the hypothalamo-pituitary-gonadal axis. Morphological findings supported the idea. To determine the mechanism of 8-oxodG formation in vivo , we examined DNA damage induced by toluene metabolic products in vitro . Minor toluene metabolites, methylhydroquinone and methylcatechols, induced oxidative DNA damage, and the methylcatechols induced NADH-mediated 8-oxodG formation more efficiently than methylhydroquinone did. We propose that oxidative DNA damage in the testis plays a role in reproductive toxicity induced by toluene. 相似文献
5.
Lu B Poirier C Gaspar T Gratzke C Harrison W Busija D Matzuk MM Andersson KE Overbeek PA Bishop CE 《Biology of reproduction》2008,78(4):601-610
The mitochondrion is involved in energy generation, apoptosis regulation, and calcium homeostasis. Mutations in genes involved in mitochondrial processes often result in a severe phenotype or embryonic lethality, making the study of mitochondrial involvement in aging, neurodegeneration, or reproduction challenging. Using a transgenic insertional mutagenesis strategy, we generated a mouse mutant, Immp2lTg(Tyr)979Ove, with a mutation in the inner mitochondrial membrane peptidase 2-like (Immp2l) gene. The mutation affected the signal peptide sequence processing of mitochondrial proteins cytochrome c1 and glycerol phosphate dehydrogenase 2. The inefficient processing of mitochondrial membrane proteins perturbed mitochondrial function so that mitochondria from mutant mice manifested hyperpolarization, higher than normal superoxide ion generation, and higher levels of ATP. Homozygous Immp2lTg(Tyr)979Ove females were infertile due to defects in folliculogenesis and ovulation, whereas mutant males were severely subfertile due to erectile dysfunction. The data suggest that the high superoxide ion levels lead to a decrease in the bioavailability of nitric oxide and an increase in reactive oxygen species stress, which underlies these reproductive defects. The results provide a novel link between mitochondrial dysfunction and infertility and suggest that superoxide ion targeting agents may prove useful for treating infertility in a subpopulation of infertile patients. 相似文献
6.
7.
Kan Ideguchi Shigeomi Shimizu Meinoshin Okumura 《Biochemical and biophysical research communications》2010,393(2):264-679
Parkinson’s disease (PD) is a common neurodegenerative disorder. The motor neuron degeneration 2 mutant (mnd2) mouse exhibits loss of striatal neurons, muscle wasting, weight loss, and death within 40 days of birth, and is considered to be a useful animal model of PD. mnd2 was identified as an autosomal recessive mutation in the HtrA2/Omi gene, which encodes a mitochondrial serine protease. Omi-deficient mitochondria are more sensitive to mitochondrial permeability transition (mPT), which raises the possibility that mPT plays a role in motor neurodegeneration in mnd2 mice. Given that cyclophilin D (CypD)-deficient mitochondria are resistant to mPT, we examined whether CypD-dependent mPT is involved in the pathogenesis of neurodegenerative disorders in mnd2 mice by generating CypD-deficient mnd2 mice. Brain mitochondria isolated from CypD-deficient mnd2 mice were more resistant to Ca2+-induced mPT than those of mnd2 mice. However, both mnd2 mice and CypD-deficient mnd2 mice showed similar survival periods and phenotypes, including the lack of weight gain, muscle wasting, and resting tremor. Our data suggest that CypD-dependent mPT does not play a major role in neurodegeneration in mnd2 mice. 相似文献
8.
C.H. Han Z.B. Guan P.X. Zhang H.L. Fang L. Li H.M. Zhang F.J. Zhou Y.F. Mao W.W. Liu 《Biochemical and biophysical research communications》2018,495(3):2178-2183
Necroptosis has been found to be involved in the pathogenesis of some lung diseases, but its role in hyperoxic acute lung injury (HALI) is still unclear. This study aimed to investigate contribution of necroptosis to the pathogenesis of HALI induced by hyperbaric hyperoxia exposure in a rat model. Rats were divided into control group, HALI group, Nec-1 (necroptosis inhibitor) group and edaravone group. Rats were exposed to pure oxygen at 250?kPa for 6?h to induce HALI. At 30?min before hyperoxia exposure, rats were intraperitoneally injected with Nec-1 or edaravone, and sacrificed at 24?h after hyperoxia exposure. Lung injury was evaluated by histology, lung water to dry ratio (W/D) and bronchoalveolar lavage fluid (BALF) biochemistry; the serum and plasma oxidative stress, expression of RIP1, RIP3 and MLKL, and interaction between RIP1 and RIP3 were determined. Results showed hyperoxia exposure significantly caused damage to lung and increased necroptotic cells and the expression of RIP1, RIP3 and MLKL. Edaravone pre-treatment not only inhibited the oxidative stress in HALI, but also reduced necroptotic cells, decreased the expression of RIP1, RIP3 and MLKL and improved lung pathology. Nec-1 pretreatment inhibited necroptosis and improved lung pathology, but had little influence on oxidative stress. This study suggests hyperoxia exposure induces oxidative stress may activate necroptosis, involving in the pathology of HALI, and strategies targeting necroptosis may become promising treatments for HALI. 相似文献
9.
An age-dependent proliferation is involved in the postnatal development of interstitial cells of Cajal in the small intestine of mice 总被引:2,自引:0,他引:2
Mei F Zhu J Guo S Zhou DS Han J Yu B Li SF Jiang ZY Xiong CJ 《Histochemistry and cell biology》2009,131(1):43-53
This paper aimed at investigating the alterations in interstitial cells of Cajal (ICCs) in the murine small intestine from
0-day to 56-day post-partum (P0–P56) by immunohistochemistry. The Kit+ ICCs, which were situated around myenteric nerve plexus (ICC-MY) formed a loose cellular network at P0 which changed into
an intact one before P32. The density of ICC-MY increased from P0 to P12, and then decreased until P32. In contrast, the estimated
total amount increased more than 15-fold at P32 than that at P0. Some Kit+/BrdU+ cells were observed at 24 h after one BrdU injection to the different-aged mice, and the number decreased from P2 to P24
and vanished at P32. Actually a few Kit+/BrdU+ cells can be observed at 1 h after one BrdU injection at P10, and the amount doubled at 24 h along with paired Kit+/BrdU+ cells. A number of BrdU+ ICCs were also labeled with CD34, CD44 and insulin-like growth factor I receptor. About 65% ICCs were BrdU+ at P32 after daily BrdU injection from P0. Our results indicate that an age-dependent proliferation is involved in the postnatal
development of ICC-MY which increase greatly in cell numbers and proliferative ICCs may originate from ICCs progenitor cells.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Feng Mei and Jiang Zhu have contributed equally to this work. 相似文献
10.
Albesa I Becerra MC Battán PC Páez PL 《Biochemical and biophysical research communications》2004,317(2):605-609
Staphylococcus aureus and Escherichia coli sensitive to chloramphenicol incubated with this antibiotic suffered oxidative stress with increase of anion superoxide (O2-). This reactive species of oxygen was detected by chemiluminescence with lucigenin. S. aureus, E. coli, and Enterococcus faecalis sensitive to ciprofloxacin exhibited oxidative stress when they were incubated with this antibiotic while resistant strains did not show stimuli of O2-. Other bacteria investigated was Pseudomonas aeruginosa, strains sensitive to ceftazidime and piperacillin presented oxidative stress in presence of these antibiotics while resistant strains were not stressed. Higher antibiotic concentration was necessary to augment O2- in P. aeruginosa biofilm than in suspension, moreover old biofilms were resistant to oxidative stress caused by antibiotics. A ceftazidime-sensitive mutant of P. aeruginosa, coming from a resistant strain, exhibited higher production of O2- than wild type in presence of this antibiotic. There was relation between antibiotic susceptibility and production of oxidative stress. 相似文献
11.
Folmer V Soares JC Rocha JB 《The international journal of biochemistry & cell biology》2002,34(10):1279-1285
In animals, chronic intake of diets with high proportions of rapidly absorbable glucose promotes the development of insulin resistance. High levels of glucose can produce permanent chemical alterations in proteins and lipid peroxidation. delta-Aminolevulinate dehydratase (delta-ALA-D) is a sulfhydryl-containing enzyme essential for all aerobic organisms and is highly sensitive to the presence of pro-oxidants elements. The heme synthetic pathway is impaired in porphyria and a frequent coexistence of diabetes mellitus and porphyria disease has been reported in humans and experimental animal models, which can be casually linked to the delta-ALA-D inhibition found in diabetics. The present study was designed to evaluate the effect of two different diets, a high glucose (HG) diet and a high starch (HS) diet, on lipid peroxidation levels in different tissues (brain, liver, and kidney) and on delta-ALA-D activity (from liver and kidney) in mice. Plasma glucose and triglyceride levels were significantly higher in mice fed HG than in mice fed HS (P < 0.02 and P < 0.03, respectively). Thiobarbituric acid reactive species (TBA-RS) content was significantly increased in kidney and liver from HG diet-fed mice when compared with animals fed HS diets (P < 0.001). Hepatic delta-ALA-D activity of HG diet-fed animals was significantly lower than that of HS diet-fed animals (P < 0.01). The results of this study support the hypothesis that consumption of a diet with high free glucose can promote the development of oxidative stress that we tentatively attribute to hyperglycemia. 相似文献
12.
Mitochondria-dependent pathway is involved in heat-induced male germ cell death: lessons from mutant mice 总被引:7,自引:0,他引:7
Vera Y Diaz-Romero M Rodriguez S Lue Y Wang C Swerdloff RS Sinha Hikim AP 《Biology of reproduction》2004,70(5):1534-1540
The signaling events leading to apoptosis can be divided into two major pathways, involving either mitochondria (intrinsic) or death receptors (extrinsic). In a recent study, we have shown the involvement of the mitochondria-dependent apoptotic pathway in heat-induced male germ cell apoptosis in the rat. In additional studies, using the gld (generalized lymphoproliferation disease) and lprcg (lymphoproliferation complementing gld) mice, which harbor loss-of-function mutations in Fas L and Fas, respectively, we have shown that heat-induced germ cell apoptosis is not blocked, thus providing evidence that the Fas signaling system is not required for heat-induced germ cell apoptosis in the testis. In the present study, we have found that the initiation of apoptosis in wild-type mice was preceded by a redistribution of Bax from a cytoplasmic to paranuclear localization in heat-susceptible germ cells. The relocation of Bax is accompanied by sequestration of ultracondensed mitochondria into paranuclear areas of apoptotic germ cells, cytosolic translocation of mitochondrial cytochrome c and DIABLO, and is associated with activation of the initiator caspase 9 and the executioner caspase 3. Similar events were also noted in both gld and lprcg mice. Taken together, these results indicate that the mitochondria-dependent pathway is the key apoptotic pathway for heat-induced male germ cell death in mice. 相似文献
13.
生精细胞凋亡相关基因 总被引:2,自引:0,他引:2
细胞凋亡(apoptosis)是一种基因控制的细胞生理性自杀行为,用以维持细胞数量的相对恒定,可由某种刺激或抑制剂的移除而激活。在哺乳动物精子发生过程中,各级生精细胞都会发生相应的凋亡,通过严格调控以确保成熟精子生成的数量和质量。生精细胞的凋亡是一个许多基因参与的复杂的不可逆过程,其中Bcl-2/Bax基因族、p53基因、Fas-Fasl基因、C-myc基因、CREM基因、HSP基因族、c-Kit/SCF基因、Insl3基因、iNOS基因、BMP8B基因、TR基因和存活蛋白(survivin)基因等发挥了重要作用。研究哺乳动物睾丸生精细胞凋亡相关基因,有利于了解生精细胞凋亡机制,为进一步阐明精子发生的调控机制,预防和治疗精子发生相关疾病提供重要的理论依据。 相似文献
14.
Cabiscol E Piulats E Echave P Herrero E Ros J 《The Journal of biological chemistry》2000,275(35):27393-27398
We have analyzed the proteins that are oxidatively damaged when Saccharomyces cerevisiae cells are exposed to stressing conditions. Carbonyl groups generated by hydrogen peroxide or menadione on proteins of aerobically respiring cells were detected by Western blotting, purified, and identified. Mitochondrial proteins such as E2 subunits of both pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase, aconitase, heat-shock protein 60, and the cytosolic fatty acid synthase (alpha subunit) and glyceraldehyde-3-phosphate dehydrogenase were the major targets. In addition we also report the in vivo modification of lipoamide present in the above-mentioned E2 subunits under the stressing conditions tested and that this also occurs with the homologous enzymes present in Escherichia coli cells that were used for comparative analysis. Under fermentative conditions, the main protein targets in S. cerevisiae cells treated with hydrogen peroxide or menadione were pyruvate decarboxylase, enolase, fatty acid synthase, and glyceraldehyde-3-phosphate dehydrogenase. Under the stress conditions tested, fermenting cells exhibit a lower viability than aerobically respiring cells and, consistently, increased peroxide generation as well as higher content of protein carbonyls and lipid peroxides. Our results strongly suggest that the oxidative stress in prokaryotic and eukaryotic cells shares common features. 相似文献
15.
16.
Abdul HM Sultana R St Clair DK Markesbery WR Butterfield DA 《Free radical biology & medicine》2008,45(10):1420-1425
Oxidative stress is strongly implicated in the progressive decline of cognition associated with aging and neurodegenerative disorders. In the brain, free radical-mediated oxidative stress plays a critical role in the age-related decline of cellular function as a result of the oxidation of proteins, lipids, and nucleic acids. A number of studies indicate that an increase in protein oxidation and lipid peroxidation is associated with age-related neurodegenerative diseases and cellular dysfunction observed in aging brains. Oxidative stress is one of the important factors contributing to Alzheimer's disease (AD), one of whose major hallmarks includes brain depositions of amyloid beta-peptide (Abeta) derived from amyloid precursor protein (APP). Mutation in APP and PS-1 genes, which increases production of the highly amyloidogenic amyloid beta-peptide (Abeta42), is the major cause of familial AD. In the present study, protein oxidation and lipid peroxidation in the brain from knock-in mice expressing human mutant APP and PS-1 were compared with brain from wild type, as a function of age. The results suggest that there is an increased oxidative stress in the brain of wild-type mice as a function of age. In APP/PS-1 mouse brain, there is a basal increase (at 1 month) in oxidative stress compared to the wild type (1 month), as measured by protein oxidation and lipid peroxidation. In addition, age-related elevation of oxidative damage was observed in APP/PS-1 mice brain compared to that of wild-type mice brain. These results are discussed with reference to the importance of Abeta42-associated oxidative stress in the pathogenesis of AD. 相似文献
17.
Aoi W Naito Y Takanami Y Kawai Y Sakuma K Ichikawa H Yoshida N Yoshikawa T 《Free radical biology & medicine》2004,37(4):480-487
Reactive oxygen species (ROS) produced during exercise may be involved in delayed-onset muscle damage related to inflammation. To investigate this hypothesis, we studied whether oxidative stress increases nuclear translocation of nuclear factor-kappaB and chemokine expression in skeletal muscle using myotube L6 cells. We also assessed whether prolonged acute exercise could increase these parameters in rats. In L6 cells, H(2)O(2) induced nuclear translocation of p65 and increased the expression of cytokine-induced neutrophil chemoattractant-1 (CINC-1) and monocyte chemoattractant protein-1 (MCP-1), whereas preincubation with alpha-tocopherol limited the increase in these proteins. Sprague Dawley rats were divided into the following groups: rested control, exercised, rested with a high alpha-tocopherol diet, and exercised with a high alpha-tocopherol diet. After 3 weeks of acclimation, both exercise groups ran on a treadmill at 25 m/min for 60 min. Exercise increased nuclear p65, CINC-1, and MCP-1 in gastrocnemius muscle cells, but these changes were ameliorated by the high alpha-tocopherol diet. Increases in myeloperoxidase and thiobarbituric acid-reactive substrates were ameliorated by a high alpha-tocopherol diet, as were the histological changes. Neutrophil activity was not altered by either exercise or a high alpha-tocopherol diet. These results indicate that delayed-onset muscle damage induced by prolonged exercise is partly related to inflammation via phagocyte infiltration caused by ROS and that alpha-tocopherol (an antioxidant) can attenuate such inflammatory changes. 相似文献
18.
Yamauchi R Wada E Kamichi S Yamada D Maeno H Delawary M Nakazawa T Yamamoto T Wada K 《Journal of neurochemistry》2007,102(5):1669-1676
Neurotensin receptor subtype 2 (Ntsr2) is a levocabastine-sensitive neurotensin receptor expressed diffusely throughout the mouse brain. Previously, we found that Ntsr2-deficient mice have an abnormality in the processing of thermal nociception. In this study, to examine the involvement of Ntsr2 in mouse behavior, we performed a fear-conditioning test in Ntsr2-deficient mice. In the contextual fear-conditioning test, the freezing response was significantly reduced in Ntsr2-deficient mice compared with that of wild-type mice. This reduction was observed from 1 h to 3 weeks after conditioning, and neither shock sensitivity nor locomotor activity was altered in Ntsr2-deficient mice. In addition, we found that Ntsr2 mRNA was predominantly expressed in cultured astrocytes and weakly expressed in cultured neurons derived from mouse brain. The combination of in situ hybridization and immunohistochemistry showed that Ntsr2 mRNA was dominantly expressed in glial fibrillary acidic protein positive cells in many brain regions including the hypothalamus, while Ntsr2 gene was co-expressed with neuron-specific microtubule associated protein-2 in limited numbers of cells. These results suggest that Ntsr2 in astrocytes and neurons may have unique function like a modulation of fear memory in the mouse brain. 相似文献
19.
Food consumption was measured during the day (lights on) and the night (lights off) and compared between one outbred and 9 inbred strains of mice (CBA/Kw, C3H, DBA2, KP, BALB/c, C57BL, B10.Amst, B10.BR, B10.BR Y-del) in age groups 30-60, 60-90, 90-120, and more than 120 days. Outbred mice and animals from B10 sublines ate significantly more during nocturnal darkness. Day and night food consumption was similar in KP animals. In mice from the remaining strains there was an apparent age-related shift from nocturnal towards diurnal eating habits. 相似文献
20.
Accelerated impairment of spermatogenic cells in SOD1-knockout mice under heat stress 总被引:4,自引:0,他引:4
Ishii T Matsuki S Iuchi Y Okada F Toyosaki S Tomita Y Ikeda Y Fujii J 《Free radical research》2005,39(7):697-705
For normal spermatogenesis, the temperature of the scrotum is lower than that of the body. The mechanism by which mammalian testes undergoes cell death as the result of exposure to heat continues to be a matter of debate. Since generation of reactive oxygen species (ROS) during heat stress and involvement in spermatogenic cell damage are postulated, we induced experimental cryptorchidism in the testes of SOD1-knockout mice and examined effects of the gene deficiency. The cleavage of DNA in testicular cells, as judged by TUNEL staining, were elevated in SOD1-knockout mice at an earlier stage than in the wild-type mice. To confirm responsiveness of SOD1 for this high susceptibility to heat stress, spermatogenic cells were isolated from SOD1-knockout and wild-type mice and cultured at 32.5 and 37°C. The cells isolated from SOD1-knockout were more vulnerable at both temperatures than those from wild-type mice. The exposure of cultured rat spermatogenic cells to ROS induced the release of cytochrome c from mitochondria, while Sertoli cells were more resistant under the same conditions. Tiron, a superoxide scavenger, suppressed the heat-induced release of cytochrome c from mitochondria. Collectively, these data suggest that ROS are generated during heat stress and cause spermatogenic cell death. Alternatively, since even a short exposure triggers harmful damage to spermatogenic cells, generated ROS may function as a type of signal for cell death rather than directly causing oxidative damage to cells. 相似文献