首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Phenotypic plasticity itself evolves, as does any other quantitative trait. A very different question is whether phenotypic plasticity causes evolution or is a major evolutionary mechanism. Existing models of the evolution of phenotypic plasticity cover many of the proposals in the literature about the role of phenotypic plasticity in evolution. I will extend existing models to cover adaptation to a novel environment, the appearance of ecotypes and possible covariation between phenotypic plasticity and mean trait value of ecotypes. Genetic assimilation does not sufficiently explain details of observed patterns. Phenotypic plasticity as a major mechanism for evolution--such as, invading new niches, speciation or macroevolution--has, at present, neither empirical nor model support.  相似文献   

3.
The aim of this study was to examine the effects of forest fragmentation on the ability of parent birds to provide their young with an adequate food supply. To examine whether prey population densities of the great tit (Parus major L.) and the blue tit (P. caeruleus L.) vary between study areas in different forest size classes we compared provisioning rates and chick diet and related these parameters to breeding success. We filmed 217 nests over two breeding seasons and collected data on frass fall as a general estimate of caterpillar availability. Nests which were attended by none or one parent only during filming (n = 46) were excluded from the analyses. In both years and for both species feeding rates were highest in the smallest fragments and lowest in the large forest. There was also a suggestion that differences in feeding rates between areas vary between years. We found no consistent tendency for prey size to change with forest size, although both species brought slightly smaller prey items to the nest in the smallest forest fragments and feeding rates correlated negatively with prey size. Caterpillars were the main item fed to nestlings, in both species. We found no evidence to suggest that either frass fall or the proportion of caterpillars in the diet varied with forest size. There was also no correlation between mean frass fall and the total number of caterpillars brought to the nests, in either species. Breeding success, as measured by clutch size, brood size, fledging weight and fledging success, did not differ between the small fragments and the large forest, in either species. There was also no relationship between provisioning rate (as concerns volume of prey fed to nestlings and the quality of chick diet) and breeding success parameters. In conclusion, this study does not suggest suboptimal foraging or breeding conditions in small fragments compared to a nearby large forest, for either species. Received: 23 June 1997 / Accepted: 29 December 1997  相似文献   

4.
Like British great tits, Belgian blue tits have a lower winter body mass when sparrowhawks are present. Since body mass affects manoeuvrability in small birds, tits may balance the risks of starvation and the risk of hawk predation by varying the amount of extra fat carried during winter. Predation pressure by sparrowhawks on young and inexperienced fledglings is at least as intense as that on the adults during winter. We therefore expected that tit fledgling body mass could also be reduced in the presence of sparrowhawks. In the years after one pair of sparrowhawks settled in a study plot, the mean body mass of blue tit fledglings was lower compared with that in years when there were no sparrowhawks. Furthermore, the shape of the curve relating juvenile survival to fledging mass changed, because the survival of the heaviest fledglings was reduced, which altered the selection differential of juvenile survival as a function of body mass from directional to stabilizing. Of seven published studies on the fledgling body mass–survival relation in tits, all three of the studies conducted in the absence of sparrowhawks showed the highest survival rates for the heaviest young, whereas in all four studies with sparrowhawks present this was no longer the case.  相似文献   

5.
Genomic selection (GS) can potentially accelerate genetic improvement of soybean [Glycine max L. (Merrill)] by reducing the time to complete breeding cycles. The objectives of this study were to (1) explore the accuracy of GS in soybean, (2) evaluate the contribution of intrapopulational structure to the accuracy of GS, and (3) compare the efficiencies of phenotypic selection and GS in soybean. For this, phenotypic and genotypic data were collected from 324 soybean genotypes (243 recombinant inbred lines and 81 cultivars) and GS was performed for five yield related traits. BayesB methodology with a 10-fold cross-validation was used to compute accuracies. The GS accuracies were evaluated for grain yield, plant height, insertion of first pod, days to maturity, and 1000-grain weight at eight locations. We found that GS can reduce the time required to complete a selection cycle in soybean, which can lead to increased production of this commercially important crop. Furthermore, genotypic accuracy was similar regardless of population structure correction.  相似文献   

6.
1. Interest in the evolutionary origin and maintenance of individual behavioural variation and behavioural plasticity has increased in recent years. 2. Consistent individual behavioural differences imply limited behavioural plasticity, but the proximate causes and wider consequences of this potential constraint remain poorly understood. To date, few attempts have been made to explore whether individual variation in behavioural plasticity exists, either within or between populations. 3. We assayed 'exploration behaviour' among wild-caught individual great tits Parus major when exposed to a novel environment room in four populations across Europe. We quantified levels of individual variation within and between populations in average behaviour, and in behavioural plasticity with respect to (i) repeated exposure to the room (test sequence), (ii) the time of year in which the assays were conducted and (iii) the interval between successive tests, all of which indicate habituation to novelty and are therefore of functional significance. 4. Consistent individual differences ('I') in behaviour were present in all populations; repeatability (range: 0.34-0.42) did not vary between populations. Exploration behaviour was also plastic, increasing with test sequence - but less so when the interval between subsequent tests was relatively large - and time of year; populations differed in the magnitude of plasticity with respect to time of year and test interval. Finally, the between-individual variance in exploration behaviour increased significantly from first to repeat tests in all populations. Individuals with high initial scores showed greater increases in exploration score than individuals with low initial scores; individual by environment interaction ('I × E') with respect to test sequence did not vary between populations. 5. Our findings imply that individual variation in both average level of behaviour and behavioural plasticity may generally characterize wild great tit populations and may largely be shaped by mechanisms acting within populations. Experimental approaches are now needed to confirm that individual differences in behavioural plasticity (habituation) - not other hidden biological factors - caused the observed patterns of I × E. Establishing the evolutionary causes and consequences of this variation in habituation to novelty constitutes an exciting future challenge.  相似文献   

7.

Key message

Early generation genomic selection is superior to conventional phenotypic selection in line breeding and can be strongly improved by including additional information from preliminary yield trials.

Abstract

The selection of lines that enter resource-demanding multi-environment trials is a crucial decision in every line breeding program as a large amount of resources are allocated for thoroughly testing these potential varietal candidates. We compared conventional phenotypic selection with various genomic selection approaches across multiple years as well as the merit of integrating phenotypic information from preliminary yield trials into the genomic selection framework. The prediction accuracy using only phenotypic data was rather low (r = 0.21) for grain yield but could be improved by modeling genetic relationships in unreplicated preliminary yield trials (r = 0.33). Genomic selection models were nevertheless found to be superior to conventional phenotypic selection for predicting grain yield performance of lines across years (r = 0.39). We subsequently simplified the problem of predicting untested lines in untested years to predicting tested lines in untested years by combining breeding values from preliminary yield trials and predictions from genomic selection models by a heritability index. This genomic assisted selection led to a 20% increase in prediction accuracy, which could be further enhanced by an appropriate marker selection for both grain yield (r = 0.48) and protein content (r = 0.63). The easy to implement and robust genomic assisted selection gave thus a higher prediction accuracy than either conventional phenotypic or genomic selection alone. The proposed method took the complex inheritance of both low and high heritable traits into account and appears capable to support breeders in their selection decisions to develop enhanced varieties more efficiently.
  相似文献   

8.
Phenotypic plasticity is often considered important for invasive plant success, yet relatively few studies have assessed plasticity in both native and invasive populations of the same species. We examined the plastic response to temperature for Bromus tectorum populations collected from similar shrub-steppe environments in the Republics of Armenia and Georgia, where it is native, and along an invasive front in California and Nevada. Plants were grown in growth chambers in either ‘warm’ (30/20 °C, day/night) or ‘cold’ (10/5 °C) conditions. Invasive populations exhibited greater adaptive plasticity than natives for freezing tolerance (as measured by chlorophyll a fluorescence), such that invasive populations grown in the cold treatment exhibited the highest tolerance. Invasive populations also exhibited more rapid seedling emergence in response to warm temperatures compared to native populations. The climatic conditions of population source locations were related to emergence timing for invasive populations and to freezing tolerance across all populations combined. Plasticity in growth-related traits such as biomass, allocation, leaf length, and photosynthesis did not differ between native and invasive populations. Rather, some growth-related traits were very plastic across all populations, which may help to dampen differences in biomass in contrasting environments. Thus, invasive populations were found to be particularly plastic for some important traits such as seedling emergence and freezing tolerance, but plasticity at the species level may also be an important factor in the invasive ability of B. tectorum.  相似文献   

9.
Råberg L  Stjernman M  Nilsson JA 《Oecologia》2005,145(3):496-503
In birds and mammals with sexual size dimorphism (SSD), the larger sex is typically more sensitive to adverse environmental conditions, such as food shortage, during ontogeny. However, some recent studies of altricial birds have found that the larger sex is less sensitive, apparently because large size renders an advantage in sibling competition. Still, this effect is not an inevitable outcome of sibling competition, because several studies of other species of altricial birds have found the traditional pattern. We investigated if the sexes differ in environmental sensitivity during ontogeny in the blue tit, a small altricial bird with c. 6% SSD in body mass (males larger than females). We performed a cross-fostering and brood size manipulation experiment during 2 years to investigate if the sexes were differently affected as regards body size (body mass, tarsus and wing length on day 14 after hatching) and pre-fledging survival. We also investigated if the relationship between body size and post-fledging survival differed between the sexes. Pre-fledging mortality was higher in enlarged than in reduced broods, representing poor and good environments, respectively, but the brood size manipulation did not affect the mortality rate of males and females differently. In both years, both males and females were smaller on day 14 after hatching in enlarged as compared to reduced broods. In one of the years, we also found significant Sex × Experiment interactions for body size, such that females were more affected by poor environmental conditions than that of males. Body size was positively correlated with post-fledging survival, but we found no interactive effects of sex and morphological traits on survival. We conclude that in the blue tit, females (the smaller sex) are more sensitive to adverse environmental conditions which, in our study, was manifest in terms of fledgling size. A review of published studies of sex differences in environmental sensitivity in sexually size-dimorphic altricial birds suggests that the smaller sex is more sensitive than the larger sex in species with large brood size and vice versa.  相似文献   

10.
Divergent selection acting on several different traits that cause multidimensional shifts are supposed to promote speciation, but the outcome of this process is highly dependent on the balance between the strength of selection vs. gene flow. Here, we studied a pair of sister species of Lake Victoria cichlids at a location where they hybridize and tested the hypothesis that divergent selection acting on several traits can maintain phenotypic differentiation despite gene flow. To explore the possible role of selection we tested for correlations between phenotypes and environment and compared phenotypic divergence (PST) with that based on neutral markers (FST). We found indications for disruptive selection acting on male breeding colour and divergent selection acting on several morphological traits. By performing common garden experiments we also separated the environmental and heritable components of divergence and found evidence for phenotypic plasticity in some morphological traits contributing to species differences.  相似文献   

11.
12.
Adaptive phenotypic plasticity and adaptive genetic differentiation enable plant lineages to maximize their fitness in response to environmental heterogeneity. The spatial scale of environmental variation relative to the average dispersal distance of a species determines whether selection will favor plasticity, local adaptation, or an intermediate strategy. Habitats where the spatial scale of environmental variation is less than the dispersal distance of a species are fine grained and should favor the expression of adaptive plasticity, while coarse-grained habitats, where environmental variation occurs on spatial scales greater than dispersal, should favor adaptive genetic differentiation. However, there is relatively little information available characterizing the link between the spatial scale of environmental variation and patterns of selection on plasticity measured in the field. I examined patterns of spatial environmental variation within a serpentine mosaic grassland and selection on an annual plant (Erodium cicutarium) within that landscape. Results indicate that serpentine soil patches are a significantly finer-grained habitat than non-serpentine patches. Additionally, selection generally favored increased plasticity on serpentine soils and diminished plasticity on non-serpentine soils. This is the first empirical example of differential selection for phenotypic plasticity in the field as a result of strong differences in the grain of environmental heterogeneity within habitats.  相似文献   

13.
Adaptive phenotypic plasticity in the form of capacity to accelerate development as a response to pond drying risk is known from many amphibian species. However, very little is known about factors that might constrain the evolution of this type of plasticity, and few studies have explored to what degree plasticity might be constrained by trade-offs dictated by adaptation to different environmental conditions. We compared the ability of southern and northern Scandinavian common frog (Rana temporaria) larvae originating from 10 different populations to accelerate their development in response to simulated pond drying risk and the resulting costs in metamorphic size in a factorial laboratory experiment. We found that (i) northern larvae developed faster than the southern larvae in all treatments, (ii) a capacity to accelerate the response was present in all five southern and all five northern populations tested, but that the magnitude of the response was much larger (and less variable) in the southern than in the northern populations, and that (iii) significant plasticity costs in metamorphic size were present in the southern populations, the plastic genotypes having smaller metamorphic size in the absence of desiccation risk, but no evidence for plasticity costs was found in the northern populations. We suggest that the weaker response to pond drying risk in the northern populations is due to stronger selection on large metamorphic size as compared with southern populations. In other words, seasonal time constraints that have selected the northern larvae to be fast growing and developing, may also constrain their innate ability for adaptive phenotypic plasticity.  相似文献   

14.
15.
16.
We observed substantial variation in the time of flowering among 13 populations of Arabidopsis thaliana (Brassicaceae) from an extensive latitudinal range when grown under uniform experimental conditions. The later the onset of flowering, the greater was potential reproduction. Later flowering plants also had greater plasticity in a host of morphological and physiological traits measured in nutrient-rich vs. nutrient-poor test environments. This relationship between flowering time and overall plasticity was only apparent for traits measured at the time of seed production, not at the time of flowering or earlier. At the time of seed production in this short-lived annual, the regression of a multivariate measure of overall plasticity on the time of flowering was linear and highly significant (r2 = 0.90, P < 0.0001). These correlations among time of flowering, reproductive fitness, and plasticity support the idea that selection for late-flowering genotypes would select concomitantly for greater plasticity.  相似文献   

17.
In socially monogamous species, extra-pair paternity can increase the variance in reproductive success and thereby the potential for sexual selection on male ornaments. We studied whether male secondary sexual ornaments are selected through within- and/or extra-pair reproductive success in the blue tit (Parus caeruleus). Male blue tits display a bright blue crown plumage, which reflects substantially in the ultraviolet (UV) and previously has been indicated to be an important sexual signal. We show that males with a more UV-shifted crown hue were less cuckolded, which probably resulted from female preference for more ornamented mates. By contrast, however, older males and males with a less UV-shifted hue sired more extra-pair young. This probably did not reflect direct female preference, since cuckolders were not less UV-ornamented than the males they cuckolded. Alternatively, a trade-off between UV ornamentation and other traits that enhance extra-pair success could explain this pattern. Our results might reflect two alternative male mating tactics, where more UV-ornamented males maximize within-pair success and less UV-ornamented males maximize extra-pair success. Since crown colour was selected in opposite directions by within-pair and extra-pair paternity, directional selection through extra-pair matings seemed weak, at least in this population and breeding season. Reduced intensity of sexual selection due to alternative mating tactics constitutes a potential mechanism maintaining additive genetic variance of male ornaments.  相似文献   

18.
The effect of natural brood size variation on offspring quality was studied in a blue tit ( Parus caeruleus ) population on the island of Gotland in the Baltic Sea. Offspring quality, measured as nestling body mass at day 13 post-hatch, declined significantly with increasing brood size, as did offspring structural body size (tarsus length). A quantitative genetic analysis revealed a high heritability of tarsus length, but also that the shorter tarsi of young from larger broods represented a negative environmental deviation from the genotypic values of their parents. Similarly, positive environmental deviations in tarsus length were found in small broods. Nestling mortality increased with increasing brood size, and smaller and lighter nestlings suffered higher mortality between day 13 and 20 post-hatch. These findings, together with those of previous studies showing that the survival prospects of malnutritioned passerine young are greatly reduced, provide evidence for a trade-off between the quantity and quality of young under non-manipulative conditions.  相似文献   

19.
20.
1. Synchronous fluctuations of geographically separated populations are in general explained by the Moran effect, i.e. a common influence on the local population dynamics of environmental variables that are correlated in space. Empirical support for such a Moran effect has been difficult to provide, mainly due to problems separating out effects of local population dynamics, demographic stochasticity and dispersal that also influence the spatial scaling of population processes. Here we generalize the Moran effect by decomposing the spatial autocorrelation function for fluctuations in the size of great tit Parus major and blue tit Cyanistes caeruleus populations into components due to spatial correlations in the environmental noise, local differences in the strength of density regulation and the effects of demographic stochasticity. 2. Differences between localities in the strength of density dependence and nonlinearity in the density regulation had a small effect on population synchrony, whereas demographic stochasticity reduced the effects of the spatial correlation in environmental noise on the spatial correlations in population size by 21.7% and 23.3% in the great tit and blue tit, respectively. 3. Different environmental variables, such as beech mast and climate, induce a common environmental forcing on the dynamics of central European great and blue tit populations. This generates synchronous fluctuations in the size of populations located several hundred kilometres apart. 4. Although these environmental variables were autocorrelated over large areas, their contribution to the spatial synchrony in the population fluctuations differed, dependent on the spatial scaling of their effects on the local population dynamics. We also demonstrate that this effect can lead to the paradoxical result that a common environmental variable can induce spatial desynchronization of the population fluctuations. 5. This demonstrates that a proper understanding of the ecological consequences of environmental changes, especially those that occur simultaneously over large areas, will require information about the spatial scaling of their effects on local population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号