首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed agarose microcapsules with a single hollow core templated by alginate microparticles using a jet-technique. We extruded an agarose aqueous solution containing suspended alginate microparticles into a coflowing stream of liquid paraffin and controlled the diameter of the agarose microparticles by changing the flow rate of the liquid paraffin. Subsequent degradation of the inner alginate microparticles using alginate lyase resulted in the hollow-core structure. We successfully obtained agarose microcapsules with 20-50 microm of agarose gel layer thickness and hollow cores ranging in diameter from ca. 50 to 450 microm. Using alginate microparticles of ca. 150 microm in diameter and enclosing feline kidney cells, we were able to create cell-enclosing agarose microcapsules with a hollow core of ca. 150 microm in diameter. The cells in these microcapsules grew much faster than those in alginate microparticles. In addition, we enclosed mouse embryonic stem cells in agarose microcapsules. The embryonic stem cells began to self-aggregate in the core just after encapsulation, and subsequently grew and formed embryoid body-like spherical tissues in the hollow core of the microcapsules. These results show that our novel microcapsule production technique and the resultant microcapsules have potential for tissue engineering, cell therapy and biopharmaceutical applications.  相似文献   

2.
Hydrogel fibers that possessed a cell-adhesive surface and were degradable via enzymatic reactions were developed for fabricating tubular constructs with smooth muscle cell (SMC) and endothelial cell (EC) layers, similar to native blood vessels, in collagen gels. The fibers were prepared by soaking hydrogel fibers prepared from a solution of sodium alginate and gelatin containing bovine ECs (BECs) in medium containing oxidized alginate (AO). BECs soaked in 8.0% (w/v) AO showed no reduction in viability within 3 h of soaking. Furthermore, mouse SMCs (MSMCs) adhered and proliferated on the AO-cross-linked hydrogels. Based on these results, we prepared AO-cross-linked hydrogel fibers containing BECs, covered their surface with MSMCs, and embedded them in collagen gels. We then degraded the fibers using alginate lyase to obtain channels in the collagen gels. Histological analysis of the released ECs using a specific fluorescent dye revealed the formation of tubular structures with layered BECs and MSMCs.  相似文献   

3.
A novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate blended with distinct salts (CaCl2, Na2HPO4, or NaCl), as a pH-sensitive hydrogel was developed for protein drug delivery. It was noted that the salts blended in hydrogels may affect the structures of an entangled network of methylcellulose and alginate and have an effect on their swelling characteristics. The methylcellulose/alginate hydrogel blended with 0.7 M NaCl (with a gelation temperature of 32 degrees C) demonstrated excellent pH sensitivity and was selected for the study of release profiles of a model protein drug (bovine serum albumin, BSA). In the preparation of drug-loaded hydrogels, BSA was well-mixed to the dissolved aqueous methylcellulose/alginate blended with salts at 4 degrees C and then gelled by elevating the temperature to 37 degrees C. This drug-loading procedure in aqueous environment at low temperature may minimize degradation of the protein drug while achieving a high loading efficiency (95-98%). The amount of BSA released from test hydrogels was a function of the amount of alginate used in the hydrogels. The amount of BSA released at pH 1.2 from the test hydrogel with 2.5% alginate was relatively low (20%), while that released at pH 7.4 increased significantly (86%). In conclusion, the methylcellulose/alginate hydrogel blended with NaCl could be a suitable carrier for site-specific protein drug delivery in the intestine.  相似文献   

4.
The usefulness of cell‐enclosing microcapsules in biomedical and biopharmaceutical fields is widely recognized. In this study, we developed a method enabling the preparation of microcapsules with a liquid core in one step using two enzymatic reactions, both of which consume H2O2 competitively. The microcapsule membrane prepared in this study is composed of the hydrogel obtained from an alginate derivative possessing phenolic hydroxyl moieties (Alg‐Ph). The cell‐enclosing microcapsules with a hollow core were obtained by extruding an aqueous solution of Alg‐Ph containing horseradish peroxidase (HRP), catalase, and cells into a co‐flowing stream of liquid paraffin containing H2O2. Formation of the microcapsule membrane progressed from the surface of the droplets through HRP‐catalyzed cross‐linking of Ph moieties by consuming H2O2 supplied from the ambient liquid paraffin. A hollow core structure was induced by catalase‐catalyzed decomposition of H2O2 resulting in the center region being at an insufficient level of H2O2. The viability of HeLa cells was 93.1% immediately after encapsulation in the microcapsules with about 250 µm diameter obtained from an aqueous solution of 2.5% (w/v) Alg‐Ph, 100 units mL?1 HRP, 9.1 × 104 units mL?1 catalase. The enclosed cells grew much faster than those in the microparticles with a solid core. In addition, the thickness of microcapsule membrane could be controlled by changing the concentrations of HRP and catalase in the range of 13–48 µm. The proposed method could be versatile for preparing the microcapsules from the other polymer derivatives of carboxymetylcellulose and gelatin. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1528–1534, 2013  相似文献   

5.
Cancer stem‐like cells (CSCs) are rare subpopulations of cancer cells. The development of three‐dimensional tissues abundant in CSCs is important to both the understanding and establishment of novel therapeutics targeting them. Here, we describe the fabrication of multicellular tumor spheroids (MTSs) abundant in CSCs by employing alginate microcapsules with spherical cavities templated by cell‐enclosing gelatin microparticles. Encapsulated human pancreatic cancer cell line PANC‐1 cells grew for 14 days until they filled the cavities. The percentage of cells expressing reported CSC markers CD24, CD44, and epithelial‐specific antigen (ESA), increased during this growth period. The percentage at 24 days of incubation, 22%, was 1.6 times higher than that of MTSs formed on a nonadherent surface in the same period of incubation. The MTSs in microcapsules could be cryopreserved in liquid nitrogen using a conventional method. No significant difference in the content of CSC marker‐expressing cells was detected at 3 days of incubation when thawed after cryopreservation for 2 weeks, compared with cells incubated without prior cryopreservation. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1071–1076, 2015  相似文献   

6.
A jetting technique in a liquid-liquid co-flowing stream was applied to the preparation of mammalian cell-enclosing calcium-alginate (Ca-alg) hydrogel fibers of several hundred micrometers in cross-sectional diameter. One percent alginate aqueous solution was extruded from needles (270, 480, 940 microm inner diameter) into a co-flowing laminar stream of 100 mM aqueous calcium chloride solution. The extruded alginate solution was stretched by the CaCl(2) solution, which is known as a "jetting process", and the Ca-alg hydrogel fibers were formed by gelation of the alginate solution through the uptake of calcium ions in the CaCl(2) solution. The cross-sectional diameter of the hydrogel fibers could be controlled from approximately 100-800 microm by changing the velocities of the alginate and CaCl(2) solution, and the inner diameter of the needle. Approximately 95% of bovine carotid artery vascular endothelial cells remained alive after the process of preparing hydrogel fibers in a co-flowing stream, demonstrating that the cell-enclosing process scarcely influences the viability of the enclosed cells.  相似文献   

7.
A microfluidic technique is described to encapsulate living cells in alginate hydrogel microparticles generated from monodisperse double-emulsion templates. A microcapillary device is used to fabricate double emulsion templates composed of an alginate drop surrounded by a mineral oil shell. Hydrogel formation begins when the alginate drop separates from the mineral oil shell and comes into contact with Ca(2+) ions in the continuous phase. Alginate hydrogel microparticles with diameters ranging from 60 to 230 μm are obtained. 65% of the cells encapsulated in the alginate microparticles were viable after one week. The technique provides a useful means to encapsulate the living cells in monodisperse hydrogel microparticles.  相似文献   

8.
Engineering adipose tissue that has the ability to engraft and establish a vascular supply is a laudable goal that has broad clinical relevance, particularly for tissue reconstruction. In this article, we developed novel microtissues from surface‐coated adipocyte/collagen/alginate microspheres and human umbilical vein endothelial cells (HUVECs) co‐cultures that resembled the components and structure of natural adipose tissue. Firstly, collagen/alginate hydrogel microspheres embedded with viable adipocytes were obtained to mimic fat lobules. Secondly, collagen fibrils were allowed to self‐assemble on the surface of the microspheres to mimic collagen fibrils surrounding the fat lobules in the natural adipose tissue and facilitate HUVEC attachment and co‐cultures formation. Thirdly, the channels formed by the gap among the microspheres served as the room for in vitro prevascularization and in vivo blood vessel development. The endothelial cell layer outside the microspheres was a starting point of rapid vascular ingrowth. Adipose tissue formation was analyzed for 12 weeks at 4‐week intervals by subcutaneous injection into the head of node mice. The vasculature in the regenerated tissue showed functional anastomosis with host blood vessels. Long‐term stability of volume and weight of the injection was observed, indicating that the vasculature formed within the constructs benefited the formation, maturity, and maintenance of adipose tissue. This study provides a microsurgical method for adipose regeneration and construction of biomimetic model for drug screening studies. Biotechnol. Bioeng. 2013; 110: 1430–1443. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
In this work, we investigated whether materials isolated from algae that threaten ecosystems can be used for human benefit. We converted acidic polysaccharides (ulvan) from the alga Ulva pertusa into soft hydrogel materials. In addition to ulvan, the hydrogels also contained alginate in a polyion complex with chitosan. Cross‐linking the hydrogel with glutaraldehyde reduced polysaccharide elution from the polyion complex gel. We also found that both ulvan? chitosan and alginate? chitosan gels were able to remove urea and heavy metals from aqueous solution. This is clinically significant, since during apheresis, toxic compounds such as urea have to be removed from the bloodstream of patients. Importantly, albumin was not removed by the hydrogels, implying that this vital protein can be returned to the bloodstream following dialysis.  相似文献   

10.
Choh SY  Cross D  Wang C 《Biomacromolecules》2011,12(4):1126-1136
Injectable hyaluronic acid (HA) hydrogels cross-linked via disulfide bond are synthesized using a thiol-disulfide exchange reaction. The production of small-molecule reaction product, pyridine-2-thione, allows the hydrogel formation process to be monitored quantitatively in real-time by UV spectroscopy. Rheological tests show that the hydrogels formed within minutes at 37 °C. Mechanical properties and equilibrium swelling degree of the hydrogels can be controlled by varying the ratio of HA pyridyl disulfide and macro-cross-linker PEG-dithiol. Degradation of the hydrogels was achieved both enzymatically and chemically by disulfide reduction with distinctly different kinetics and profiles. In the presence of hyaluronidase, hydrogel mass loss over time was linear and the degradation was faster at higher enzyme concentrations, suggesting surface-limited degradation. The kinetics of hydrogel erosion by glutathione was not linear, nor did the erosion rate correlate linearly with glutathione concentration, suggesting a bulk erosion mechanism. A cysteine-containing chemokine, stromal cell-derived factor 1α, was successfully encapsulated in the hydrogel and released in vitro without chemical alteration. Several different cell types, including fibroblasts, endothelial cells, and mesenchymal stem cells, were successfully encapsulated in the hydrogels with high cell viability during and after the encapsulation process. Substantial cell viability in the hydrogels was maintained up to 7 days in culture despite the lack of adhesion between the HA matrix and the cells. The facile synthesis of disulfide-cross-linked, dual-responsive degradable HA hydrogels may enable further development of bioactive matrices potentially suitable for tissue engineering and drug delivery applications.  相似文献   

11.
In this work, hydrogels based on semi-interpenetrating polymeric networks (semi-IPN) based on collagen-polyurethane-alginate were studied physicochemically and from different approaches for biomedical application. It was determined that the matrices in the hydrogel state are crosslinked by the formation of urea and amide bonds between the biopolymer chains and the polyurethane crosslinker. The increment in alginate content (0–40 wt%) significantly increases the swelling capacity, generating semi-crystalline granular structures with improved storage modulus and resistance to thermal, hydrolytic, and proteolytic degradation. The in vitro bioactivity results indicated that the composition of these novel hydrogels stimulates the metabolic activity of monocytes and fibroblasts, benefiting their proliferation; while in cancer cell lines, it was determined that the composition of these biomaterials decreases the metabolic activity of breast cancer cells after 48 h of stimulation, and for colon cancer cells their metabolic activity decreases after 72 h of contact for the hydrogel with 40 wt% alginate. The matrices show a behavior of multidose release of ketorolac, and a higher concentration of analgesic is released in the semi-IPN matrix. The inhibition capacity of Escherichia coli is higher if the polysaccharide concentration is low (10 wt%). The in vitro wound closure test (scratch test) results indicate that the hydrogel with 20 wt% alginate shows an improvement in wound closure at 15 days of contact. Finally, the bioactivity of mineralization was evaluated to demonstrate that these hydrogels can induce the formation of carbonated apatite on their surface. The engineered hydrogels show biomedical multifunctionality and they could be applied in soft and hard tissue healing strategies, anticancer therapies, and drug release devices.  相似文献   

12.
Our aim was to synthesize a biomaterial that stimulates angiogenesis for tissue engineering applications by exploiting the ability of heparin to bind and release vascular endothelial growth factor (VEGF). The approach adopted involved modification of a hydrogel with positively charged peptides (oligolysine or oligoarginine) to achieve heparin binding. Precursor hydrogels were produced from copolymerization of N‐vinyl pyrolidone, diethylene glycol bis allyl carbonate and acrylic acid (PNDA) and functionalized after activation of the carboxylic acid groups with trilysine or triarginine peptides (PNDKKK and PNDRRR). Both hydrogels were shown to bind and release bioactive VEGF165 with arginine‐modified hydrogel outperforming the lysine‐modified hydrogel. Cytocompatibility of the hydrogels was confirmed in vitro with primary human dermal fibroblasts and human dermal microvascular endothelial cells (HUDMECs). Proliferation of HUDMECs was stimulated by triarginine‐functionalized hydrogels, and to a lesser extent by lysine functionalized hydrogels once loaded with heparin and VEGF. The data suggests that heparin‐binding hydrogels provide a promising approach to a pro‐angiogenic biomaterial. Biotechnol. Bioeng. 2013; 110: 296–317. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Bovine adrenal medulla capillary endothelial cells were isolated and cloned, and their morphological behaviors in vitro were examined. In the culture of primary or early passage, one type of colony formed intracellular lumina both on the dish and in the three dimensional collagen gel. Another type proliferated well and showed morphology ranging from slender-shape to cobblestone shape, and were easily cloned. Cloned cells which showed slender-shapes formed tubular network on plastic dish after addition of PMA, OAG or vanadate, and these cells also formed multicellular tubules in the three dimensional collagen gel. However, the formation of diaphragmed fenestrae by these slender-shape clones was rare. One clone which showed cobblestone shape formed diaphragmed fenestrae, when cultured on collagen gel for more than one month. Isolated colonies or clones showed heterogeneity of cell shape, angiogenic behaviors and fenestrae formation.  相似文献   

14.
Bone marrow mesenchymal stem cells (MSCs) are candidate cells for cartilage tissue engineering. This is due to their ability to undergo chondrogenic differentiation after extensive expansion in vitro and stimulation with various biomaterials in three-dimensional (3-D) systems. Collagen type II is one of the major components of the hyaline cartilage and plays a key role in maintaining chondrocyte function. This study aimed at analyzing the MSC chondrogenic response during culture in different types of extracellular matrix (ECM) with a focus on the influence of collagen type II on MSC chondrogenesis. Bovine MSCs were cultured in monolayer as well as in alginate and collagen type I and II hydrogels, in both serum free medium and medium supplemented with transforming growth factor (TGF) beta1. Chondrogenic differentiation was detected after 3 days of culture in 3-D hydrogels, by examining the presence of glycosaminoglycan and newly synthesized collagen type II in the ECM. Differentiation was most prominent in cells cultured in collagen type II hydrogel, and it increased in a time-dependent manner. The expression levels of the of chondrocyte specific genes: sox9, collagen type II, aggrecan, and COMP were measured by quantitative "Real Time" RT-PCR, and genes distribution in the hydrogel beads were localized by in situ hybridization. All genes were upregulated by the presence of collagen, particularly type II, in the ECM. Additionally, the chondrogenic influence of TGF beta1 on MSCs cultured in collagen-incorporated ECM was analyzed. TGF beta1 and dexamethasone treatment in the presence of collagen type II provided more favorable conditions for expression of the chondrogenic phenotype. In this study, we demonstrated that collagen type II alone has the potential to induce and maintain MSC chondrogenesis, and prior interaction with TGF beta1 to enhance the differentiation.  相似文献   

15.
Cardiac tissue engineering is an emerging approach for cardiac regeneration utilizing the inherent healing responses elicited by the surviving heart using biomaterial templates. In this study, we aimed to develop hydrogel scaffolds for cardiac tissue regeneration following myocardial infarction (MI). Two superabsorbent hydrogels, CAHA2A and CAHA2AP, were developed employing interpenetration chemistry. CAHA2A was constituted with alginate, carboxymethyl cellulose, (hydroxyethyl) methacrylate, and acrylic acid, where CAHA2AP was prepared by interpenetrated CAHA2A with polyvinyl alcohol. Both hydrogels displayed superior physiochemical characteristics, as determined by attenuated total reflection infrared spectroscopy spectral analysis, differential scanning calorimetry measurements, tensile testing, contact angle, water profiling, dye release, and conductivity. In vitro degradation of the hydrogels displayed acceptable weight composure and pH changes. Both hydrogels were hemocompatible, and biocompatible as evidenced by direct contact and MTT assays. The hydrogels promoted anterograde and retrograde migration as determined by the z-stack analysis using H9c2 cells grown with both gels. Additionally, the coculture of the hydrogels with swine epicardial adipose tissue cells and cardiac fibroblasts resulted in synchronous growth without any toxicity. Also, both hydrogels facilitated the production of extracellular matrix by the H9c2 cells. Overall, the findings support an appreciable in vitro performance of both hydrogels for cardiac tissue engineering applications.  相似文献   

16.
The structure of calcium-saturated alginate hydrogels has been studied by combining rheological determinations and relaxometry measurements. The mechanical spectroscopy analyses performed on alginate gel cylinders at different polysaccharide concentration allowed estimating their main structural features such as the average mesh size. The calculation was based on the introduction of a front factor in the classical rubber elasticity approach which was correlated to the average length of the Guluronic acid blocks along the polysaccharide chain. Transverse relaxation time (T(2)) determinations performed on the cylinders revealed the presence of two relaxation rates of the water entrapped within the hydrogel network. The cross-correlation of the latter data with the rheological measurements allowed estimating the mesh size distribution of the hydrogel network. The results obtained for the hydrogel cylinders were found to be consistent with the relaxometric analysis performed on the alginate microbeads where, however, only one type of water bound into the network structure was detected. A good correlation was found in the average mesh size determined by means of relaxometric measurements on alginate microbeads and by a statistical analysis performed on TEM micrographs. Finally, the addition of a solution containing calcium ions allowed investigating further the different water relaxation modes within alginate hydrogels.  相似文献   

17.
The use of protein hydroxy ethylmethacrylate (HEMA) hydrogels to control cell morphology and growth, as well as the synthesis of extracellular matrix components, is described in this communication. HEMA hydrogels prepared with collagen support growth of embryonic lung fibroblasts (IMR-90), as well as bovine aortic and pulmonary artery endothelial cells at a level comparable to the respective cells grown on tissue culture surfaces. On the other hand, HEMA hydrogels prepared with solubilized elastin inhibit the fibroblast growth and prevent both types of endothelial cell cultures from achieving their normal morphology. These morphologically altered endothelial cells resume a normal cobblestone-like appearance when subcultivated from the elastin-HEMA hydrogels to tissue culture plastic. When pulsed with [14C]proline, the procollagens synthesized by the endothelial cells on the different surfaces vary, as shown by immunoprecipitation and polyacrylamide gel electrophoresis. On the standard tissue culture plastic, the confluent cells produce mainly type III procollagen in the medium, whereas those endothelial cells grown on collagen and elastin-HEMA hydrogels synthesize primarily type I procollagen (much like sprouting cells on tissue culture plastic), regardless of their morphology.  相似文献   

18.
Thermo-sensitive semi-IPN hydrogels were prepared via in situ copolymerization of N-isopropylacrylamide (NIPAAm) with poly(ethylene glycol)-co-poly(ε-caprolactone) (PEG-co-PCL) macromer in the presence of sodium alginate by UV irradiation technology. The effects of the sodium alginate content, temperature, and salt on the swelling behavior of the as-obtained hydrogels were studied. The results showed that the swelling ratio of the hydrogels increased with the increasing sodium alginate content at the same temperature, and decreased with the increase in temperature. The salt sensitivity of the semi-IPN hydrogels was dependent on the content of sodium alginate introduced in the hydrogels. The mechanical rheology of the hydrogels and in vitro release behavior of bovine serum albumin (BSA) in situ encapsulated within the hydrogels were also investigated. It was found that the introduction of sodium alginate with semi-IPN structure improved mechanical strength of the hydrogels and the cumulative release percentage of BSA from the hydrogels. Such double-sensitive semi-IPN hydrogel materials could be exploited as potential candidates for drug delivery carriers.  相似文献   

19.
20.
Cell survival in complex, vascularized tissues, has been implicated as a major bottleneck in advancement of therapies based on cardiac tissue engineering. This limitation motivates the search for small, inexpensive molecules that would simultaneously be cardio-protective and vasculogenic. Here, we present peptide sequence QHREDGS, based upon the fibrinogen-like domain of angiopoietin-1, as a prime candidate molecule. We demonstrated previously that QHREDGS improved cardiomyocyte metabolism and mitigated serum starved apoptosis. In this paper we further demonstrate the potency of QHREDGS in its ability to enhance endothelial cell survival, metabolism and tube formation. When endothelial cells were exposed to the soluble form of QHREDGS, improvements in endothelial cell barrier functionality, nitric oxide production and cell metabolism (ATP levels) in serum starved conditions were found. The functionality of the peptide was then examined when conjugated to collagen-chitosan hydrogel, a potential carrier for in vivo application. The presence of the peptide in the hydrogel mitigated paclitaxel induced apoptosis of endothelial cells in a dose dependent manner. Furthermore, the peptide modified hydrogels stimulated tube-like structure formation of encapsulated endothelial cells. When integrin αvβ3 or α5β1were antibody blocked during cell encapsulation in peptide modified hydrogels, tube formation was abolished. Therefore, the dual protective nature of the novel peptide QHREDGS may position this peptide as an appealing augmentation for collagen-chitosan hydrogels that could be used for biomaterial delivered cell therapies in the settings of myocardial infarction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号