首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Intracellular trafficking represents a key mechanism that regulates cell fate by participating in either prodeath or prosurvival signaling. Soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein α (αSNAP) is a well known component of vesicle trafficking machinery that mediates intermembrane fusion. αSNAP increases cell resistance to cytotoxic stimuli, although mechanisms of its prosurvival function are poorly understood. In this study, we found that either siRNA-mediated knockdown of αSNAP or expression of its dominant negative mutant induced epithelial cell apoptosis. Apoptosis was not caused by activation of the major prodeath regulators Bax and p53 and was independent of a key αSNAP binding partner, NSF. Instead, death of αSNAP-depleted cells was accompanied by down-regulation of the antiapoptotic Bcl-2 protein; it was mimicked by inhibition and attenuated by overexpression of Bcl-2. Knockdown of αSNAP resulted in impairment of Golgi to endoplasmic reticulum (ER) trafficking and fragmentation of the Golgi. Moreover, pharmacological disruption of ER-Golgi transport by brefeldin A and eeyarestatin 1 or siRNA-mediated depletion of an ER/Golgi-associated p97 ATPase recapitulated the effects of αSNAP inhibition by decreasing Bcl-2 level and triggering apoptosis. These results reveal a novel role for αSNAP in promoting epithelial cell survival by unique mechanisms involving regulation of Bcl-2 expression and Golgi biogenesis.  相似文献   

5.
Boar testes synthesize high amounts of estrogens which are known to stimulate several male sexual functions in a variety of extragonadal target tissues. Possible effects within the testis depend on the existence of the estrogen receptor subtypes α and β (ERα, ERβ). The precise cellular localization of these subtypes within the testis was, so far, based mainly on protein expression studies using different antibodies in several species including boars shows contradictory results. Therefore, we investigated the ERα and ERβ gene expression using RT-PCR of testis homogenates and RT-PCR after UV-single cell microdissection combined with in-situ hybridization of four fertile boars with an average age of 32 weeks. Both ERα and ERβ mRNA were found in testis homogenates. Using in-situ hybridization and UV-single cell microdissection ERα mRNA was present in type A and type B spermatogonia up to mid-pachytene primary spermatocytes in stage V–VIII and stage I of the seminiferous epithelial cycle, but not in other cells. ERβ mRNA was found only in Sertoli cells. Interstitial Leydig cells revealed neither ERα nor ERβ mRNA. The data suggest a direct impact of estrogen in the boar on Sertoli cell function via ERβ and germ cell formation via ERα.  相似文献   

6.
7.
Protein kinase A (PKA) exists as several tissue-specific isoforms that through phosphorylation of serine and threonine residues of substrate proteins act as key regulators of a number of cellular processes. We here demonstrate that the human sperm-specific isoform of PKA named Cα2 is important for sperm motility and thus male fertility. Furthermore, we report on the first three-dimensional crystal structure of human apo Cα2 to 2.1 ?. Apo Cα2 displays an open conformation similar to the well-characterized apo structure of murine Cα1. The asymmetric unit contains two molecules and the core of the small lobe is rotated by almost 13° in the A molecule relative to the B molecule. In addition, a salt bridge between Lys72 and Glu91 was observed for Cα2 in the apo-form, a conformation previously found only in dimeric or ternary complexes of Cα1. Human Cα2 and Cα1 share primary structure with the exception of the amino acids at the N-terminus coded for by an alternative exon 1. The N-terminal glycine of Cα1 is myristoylated and this aliphatic chain anchors the N-terminus to an intramolecular hydrophobic pocket. Cα2 cannot be myristoylated and the crystal structure revealed that the equivalent hydrophobic pocket is unoccupied and exposed. Nuclear magnetic resonance (NMR) spectroscopy further demonstrated that detergents with hydrophobic moieties of different lengths can bind deep into this uncovered pocket. Our findings indicate that Cα2 through the hydrophobic pocket has the ability to bind intracellular targets in the sperm cell, which may modulate protein stability, activity and/or cellular localization.  相似文献   

8.
9.
Bisphenol A (BPA) is an endocrine disruptor that may have adverse effects on human health. We recently isolated protein-disulfide isomerase (PDI) as a BPA-binding protein from rat brain homogenates and found that BPA markedly inhibited PDI activity. To elucidate mechanisms of this inhibition, detailed structural, biophysical, and functional analyses of PDI were performed in the presence of BPA. BPA binding to PDI induced significant rearrangement of the N-terminal thioredoxin domain of PDI, resulting in more compact overall structure. This conformational change led to closure of the substrate-binding pocket in b′ domain, preventing PDI from binding to unfolded proteins. The b′ domain also plays an essential role in the interplay between PDI and ER oxidoreduclin 1α (Ero1α), a flavoenzyme responsible for reoxidation of PDI. We show that BPA inhibited Ero1α-catalyzed PDI oxidation presumably by inhibiting the interaction between the b′ domain of PDI and Ero1α; the phenol groups of BPA probably compete with a highly conserved tryptophan residue, located in the protruding β-hairpin of Ero1α, for binding to PDI. Consistently, BPA slowed down the reoxidation of PDI and caused the reduction of PDI in HeLa cells, indicating that BPA has a great impact on the redox homeostasis of PDI within cells. However, BPA had no effect on the interaction between PDI and peroxiredoxin-4 (Prx4), another PDI family oxidase, suggesting that the interaction between Prx4 and PDI is different from that of Ero1α and PDI. These results indicate that BPA, a widely distributed and potentially harmful chemical, inhibits Ero1-PDI-mediated disulfide bond formation.  相似文献   

10.
11.
12.
13.
A number of signaling molecules are involved in the activation of the mitogen-activated protein kinase (MAPK) pathway by G protein-coupled receptors. In this study, we have demonstrated that α(2B)-adrenergic receptor (α(2B)-AR) interacts with ADP-ribosylation factor 1 (ARF1), a small GTPase involved in vesicle-mediated trafficking, in an agonist activation-dependent manner and that the interaction is mediated through a unique double Trp motif in the third intracellular loop of the receptor. Interestingly, mutation of the double Trp motif and siRNA-mediated depletion of ARF1 attenuate α(2B)-AR-mediated activation of extracellular signal-regulated kinases 1/2 (ERK1/2) without altering receptor intracellular trafficking, whereas expression of the constitutively active mutant ARF1Q71L and ARNO, a GDP-GTP exchange factor of ARF1, markedly enhances the activation of Raf1, MEK1, and ERK1/2. These data strongly demonstrate that the small GTPase ARF1 modulates ERK1/2 activation by α(2B)-AR and provide the first evidence indicating a novel function for ARF1 in regulating the MAPK signaling pathway.  相似文献   

14.
The search for functional foods containing probiotics has been growing due to numerous benefits they provide to health, such as modulation of the immune system and of the anti-inflammatory activity by inhibiting the release of pro-inflammatory cytokines, such as TNF-α. However, the mechanisms of actions of the probiotics responsible for this inhibition have not been completely explained so far. A better understanding of the interaction between probiotics and cell signaling pathways related to inflammatory processes shall help to prevent inflammatory bowel diseases. Therefore, the aim of this revision is to help understand the mechanisms of action of probiotics in cell signaling pathways that regulate TNF-α expression. Probiotics might act at different points of the MAPK pathway, on NF-kB, on proteasome activity, on Toll-like receptors, and on their regulators and stimuli. The present revision reaches the conclusion that probiotics act through multiple mechanisms, especially by inhibiting IkB phosphorylation and degradation, thus preventing the translocation of NF-kB. Effects are also shown to be strain-specific, and probiotics of the genus Lactobacillus are proved to play and essential role in anti-inflammatory activity.  相似文献   

15.
The cooperative cell kinetic actions of ET-1 with TGF- or EGF in normal rat kidney fibroblasts (NRK-49F) and KNRK cells (Kirsten MSV transformed) were analyzed by [3H]-thymidine incorporation assay and flow cytometry. A marked synergistic effect of TGF- and ET-1 (or EGF and ET-1) on DNA synthesis and G1 to S transition was observed in NRK cells; 15–20% S for TGF- and 12% S for ET-1 alone but 45–50% S in combination. There was no detectable effect on cell cycle kinetics by TGF- (1 ng/ml) or EGF (1 ng/ml) plus ET-1 (1 ng/ml) in KNRK cells treated for 22 hours. Insulin, insulin-like growth factor I (IGF-I), fibroblast growth factor (FGF), platelet derived growth factor (PDGF), and transforming growth factor (TGF-) were also tested and found to have no significant synergistic effects on ET-1 actions. Our findings suggest that the combination of TGF- (EGF) and ET-1 is an important part of an intricate network which coordinates progression of G1 to S phase in normal cells.  相似文献   

16.
K Fujimori  M Yano  T Ueno 《PloS one》2012,7(9):e44698
We recently reported that aldo-keto reductase 1B3-produced prostaglandin (PG) F(2α) suppressed the early phase of adipogenesis. PGE(2) is also known to suppress adipogenesis. In this study, we found that microsomal PGE(2) synthase (PGES)-1 (mPGES-1; PTGES1) acted as the PGES in adipocytes and that PGE(2) and PGF(2α) synergistically suppressed the early phase of adipogenesis. PGE(2) production was detected in preadipocytes and transiently enhanced at 3 h after the initiation of adipogenesis of mouse adipocytic 3T3-L1 cells, followed by a quick decrease; and its production profile was similar to the expression of the cyclooxygenase-2 (PTGS2) gene. When 3T3-L1 cells were transfected with siRNAs for any one of the three major PTGESs, i.e., PTGES1, PTGES2 (mPGES-2), and PTGES3 (cytosolic PGES), only PTGES1 siRNA suppressed PGE(2) production and enhanced the expression of adipogenic genes. AE1-329, a PTGER4 (EP4) receptor agonist, increased the expression of the Ptgs2 gene with a peak at 1 h after the initiation of adipogenesis. PGE(2)-mediated enhancement of the PTGS2 expression was suppressed by the co-treatment with L-161982, a PTGER4 receptor antagonist. Moreover, AE1-329 enhanced the expression of the Ptgs2 gene by binding of the cyclic AMP response element (CRE)-binding protein to the CRE of the Ptgs2 promoter; and its binding was suppressed by co-treatment with L-161982, which was demonstrated by promoter luciferase and chromatin immunoprecipitation assays. Furthermore, when 3T3-L1 cells were caused to differentiate into adipocytes in medium containing both PGE(2) and PGF(2α), the expression of the adipogenic genes and the intracellular triglyceride level were decreased to a greater extent than in medium containing either of them, revealing that PGE(2) and PGF(2α) independently suppressed adipogenesis. These results indicate that PGE(2) was synthesized by PTGES1 in adipocytes and synergistically suppressed the early phase of adipogenesis of 3T3-L1 cells in cooperation with PGF(2α) through receptor-mediated activation of PTGS2 expression.  相似文献   

17.
The targeting of messenger RNAs (mRNAs) to specific subcellular sites for local translation plays an important role in diverse cellular and developmental processes in eukaryotes, including axis formation, cell fate determination, spindle pole regulation, cell motility, and neuronal synaptic plasticity. Recently, a new conserved class of Lsm proteins, the Scd6 family, has been implicated in controlling mRNA function. Depletion or mutation of members of the Scd6 family, Caenorhabditis elegans CAR-1 and Drosophila melanogaster trailer hitch, lead to a variety of developmental phenotypes, which in some cases can be linked to alterations in the endoplasmic reticulum (ER). Scd6/Lsm proteins are RNA binding proteins and are found in RNP complexes associated with translational control of mRNAs, and these complexes can colocalize with the ER. These findings raise the possibility that localization and translational regulation of mRNAs at the ER plays a role in controlling the organization of this organelle.  相似文献   

18.
19.
20.
LKB1, the tumour suppressor, is found mutated in Peutz-Jeghers syndrome (PJS). The LKB1 is a serine-threonine kinase protein that is allosterically activated by the binding of STRADα and MO25α without phosphorylating the Thr212 present at activation loop. The present study aims to highlight the structural dynamics and complexation mechanism during the allosteric activation of LKB1 by these co-activators using molecular dynamics simulations. The all atom simulations performed on the complexes of LKB1 with ATP, STRADα, and MO25α for a period of 30 ns reveal that binding of STRADα and MO25α significantly stabilizes the highly flexible regions of LKB1 such as ATP binding region (β1-β2 loop), catalytic & activation loop segments and αG helix. Also, binding of STRADα and MO25α to LKB1 promotes coordinated motion between N- and C-lobes along with the catalytic & activation loops by forming H-bonds between LKB1 and co-activators, which further facilitate to establish the conserved attributes of active LKB1 such as (i) formation of salt bridge between Lys78 and Glu98, (ii) formation of stable hydrophobic R- and C-spines, and (iii) interaction between both catalytic and activation loops. Especially, the residues of LKB1 interacting with STRADα (Arg74, Glu342) and MO25α (Glu165, Pro203 and Phe204) are observed to play a significant role in stabilizing the (LKB1-ATP)-(STRADα-ATP)-MO25α complex. Overall, the present work highlighting the structural dynamics of LKB1 by the binding of allosteric co-activators is expected to provide a basic understanding on drug design specific to PJS syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号