首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Streptococcal surface dehydrogenase (SDH) is a multifunctional, anchorless protein present on the surface of group A Streptococcus (GAS). It plays a regulatory role in GAS-mediated intracellular signaling events in human pharyngeal cells. Using ligand-binding assays, we have identified an approximately 55 kDa protein as an SDH-specific receptor protein on the surface of Detroit human pharyngeal cells. LC-MS/MS analyses identified this SDH-binding pharyngeal cell-surface-exposed membrane-bound protein as uPAR (urokinase plasminogen activator receptor)/CD87. Ligand-binding assays also revealed that only the N-terminal domain (D1) of uPAR bound to SDH. uPAR-D1 more specifically bound to the C-terminal alpha-helix and two immediate flanking regions of the S-loop of the SDH molecule. Site-directed mutagenesis in GAS resulting in SDH with altered C-terminal ends, and the removal of uPAR from pharyngeal cells by phosphatidylinositol-phopsholipase C treatment decreased GAS ability to adhere to pharyngeal cells. When compared to uninfected Detroit pharyngeal cells, GAS-infected pharyngeal cells showed a transient but a significant increase in the expression of uPAR-specific mRNA, and a prolonged recycling process of uPAR on the cell surface. Together, these results indicate that the specific streptococcal surface protein-pharyngeal cell receptor interaction mediated by SDH and uPAR is modulated during GAS infection of human pharyngeal cells. This interaction significantly contributes to bacterial adherence and thus may play a significant role in GAS pathogenesis by regulating intracellular signaling events in pharyngeal cells.  相似文献   

2.
Serum opacity factor (SOF) is a bifunctional cell surface protein expressed by 40-50% of group A streptococcal (GAS) strains comprised of a C-terminal domain that binds fibronectin and an N-terminal domain that mediates opacification of mammalian sera. The sof gene was recently discovered to be cotranscribed in a two-gene operon with a gene encoding another fibronectin-binding protein, sfbX. We compared the ability of a SOF(+) wild-type serotype M49 GAS strain and isogenic mutants lacking SOF or SfbX to invade cultured HEp-2 human pharyngeal epithelial cells. Elimination of SOF led to a significant decrease in HEp-2 intracellular invasion while loss of SfbX had minimal effect. The hypoinvasive phenotype of the SOF(-) mutant could be restored upon complementation with the sof gene on a plasmid vector, and heterologous expression of sof49 in M1 GAS or Lactococcus lactis conferred marked increases in HEp-2 cell invasion. Studies using a mutant sof49 gene lacking the fibronectin-binding domain indicated that the N-terminal opacification domain of SOF contributes to HEp-2 invasion independent of the C-terminal fibronectin binding domain, findings corroborated by observations that a purified SOF N-terminal peptide could promote latex bead adherence to HEp-2 cells and inhibit GAS invasion of HEp-2 cells in a dose-dependent manner. Finally, the first in vivo studies to employ a single gene allelic replacement mutant of SOF demonstrate that this protein contributes to GAS virulence in a murine model of necrotizing skin infection.  相似文献   

3.
Group A streptococci (GAS, Streptococcus pyogenes) and Group G streptococci (GGS, Streptococcus dysgalactiae ssp. equisimilis) adhere to and invade host cells by binding to fibronectin. The fibronectin-binding protein SfbI from GAS acts as an invasin by using a caveolae-mediated mechanism. In the present study we have identified a fibronectin-binding protein, GfbA, from GGS, which functions as an adhesin and invasin. Although there is a high degree of similarity in the C-terminal sequence of SfbI and GfbA, the invasion mechanisms are different. Unlike caveolae-mediated invasion by SfbI-expressing GAS, the GfbA-expressing GGS isolate trigger cytoskeleton rearrangements. Heterologous expression of GfbA on the surface of a commensal Streptococcus gordonii and purified recombinant protein also triggered actin rearrangements. Expression of a truncated GfbA (lacking the aromatic domain) and chimeric GfbA/SfbI protein (replacing the aromatic domain of SfbI with the GfbA aromatic domain) on S. gordonii or recombinant proteins alone showed that the aromatic domain of GfbA is responsible for different invasion mechanisms. This is the first evidence for a biological function of the aromatic domain of fibronectin-binding proteins. Furthermore, we show that streptococci invading via cytoskeleton rearrangements and intracellular trafficking along the classical endocytic pathway are less persistence than streptococci entering via caveolae.  相似文献   

4.
Clinically isolated group A streptococci (GAS) of different M protein types were studied using aminoglycoside exclusion and [2,8-3H]adenine radiolabeled GAS assays to compare the abilities of different strains to adhere to and internalize within human laryngeal epithelial (HEp-2) cells. GAS isolated from patients with pharyngitis and GAS isolated from patients with more severe disease, such as necrotizing fasciitis, adhered to and penetrated HEp-2 cells equally well. M3, M4, M6, and M12 strains adhered to and were internalized within HEp-2 cells more than M1 strains. M18 GAS producing hyaluronic acid capsules were less adherent and less invasive than the M3, M4, M6, and M12 strains. An M3-producing GAS strain and its M protein-deficient isogenic strain adhered similarly to HEp-2 cells, but the M protein-deficient strain exhibited greater penetration. Preincubation of HEp-2 cells with an N-terminal synthetic M3 peptide did not alter the adherence or penetration by an M3 strain. In summary, this study demonstrates that GAS from invasive and non-invasive disease adhere to and penetrate HEp-2 cells equally well and that multiple strains of GAS with various M protein types have the ability to adhere to and penetrate HEp-2 cells.  相似文献   

5.
Scavenger receptor gp340 aggregates group A streptococci by binding pili   总被引:1,自引:0,他引:1  
Group A streptococci (GAS) are the most frequent cause of bacterial pharyngitis. The first obstacle to GAS colonization of the pharynx is saliva. As well as forming a physical barrier, saliva contains components of innate and acquired immunity. Previous work has shown that saliva induces bacterial aggregation, which may serve as a clearance mechanism. As the aggregation of some oral streptococci in saliva is mediated by long proteinaceous appendages, we hypothesized that pili of GAS might behave similarly. Wild-type GAS M1 strain SF370 aggregated in saliva, while pilus-defective mutants did not. Similarly, heterologous expression of diverse GAS pili on the surface of Lactococcus lactis induced aggregation in saliva, while control strains were unaffected. Further studies revealed that aggregating bacteria bound salivary component gp340. Purified gp340 aggregated wild-type GAS and L. lactis expressing GAS pili, but not control strains. GAS pilus-defective mutants were abrogated in gp340 binding and aggregation. Furthermore, gp340-mediated aggregation reduced bacterial adhesion to human epithelial cells, suggesting a role in host defence.  相似文献   

6.
Group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram-positive human pathogen responsible for several acute diseases and autoimmune sequelae that account for half a million deaths worldwide every year. GAS infections require the capacity of the pathogen to adhere to host tissues and assemble in cell aggregates. Furthermore, a role for biofilms in GAS pathogenesis has recently been proposed. Here we investigated the role of GAS pili in biofilm formation. We demonstrated that GAS pilus-negative mutants, in which the genes encoding either the pilus backbone structural protein or the sortase C1 have been deleted, showed an impaired capacity to attach to a pharyngeal cell line. The same mutants were much less efficient in forming cellular aggregates in liquid culture and microcolonies on human cells. Furthermore, mutant strains were incapable of producing the typical three-dimensional layer with bacterial microcolonies embedded in a carbohydrate polymeric matrix. Complemented mutants had an adhesion and aggregation phenotype similar to the wild-type strain. Finally, in vivo expression of pili was indirectly confirmed by demonstrating that most of the sera from human patients affected by GAS-mediated pharyngitis recognized recombinant pili proteins. These data support the role of pili in GAS adherence and colonization and suggest a general role of pili in all pathogenic streptococci.  相似文献   

7.
A eukaryotic-type signaling system in group A Streptococcus (GAS) was identified and characterized. This system comprises primarily the products of two co-transcribed genes, a eukaryotic-type Ser/Thr kinase (SP-STK) and phosphatase (SP-STP) and their endogenous substrate histone-like protein (SP-HLP). Enzyme activities of SP-STK and SP-STP primarily depended on Mn(2+). The site on the substrate for reversible phosphorylation by these enzymes was found to be only the threonine residue. Using specific antibodies generated against these proteins, SP-STK was found to be membrane-associated with its N-terminal kinase domain facing the cytoplasm and its C-terminal repeat domain outside the membrane and cell-wall associated. Further, SP-STP, primarily a cytoplasmic protein, was found to be a major secretory protein of GAS and essential for bacterial survival. Three isogenic mutants, lacking either the entire SP-STK, or one of its two domains, were found displaying distinct pleiotropic effects on growth, colony morphology, cell division/septation, surface protein/virulence factor expression, bacterial ability to adhere to and invade human pharyngeal cells, and resist phagocytosis by human neutrophils. In addition to these properties, the ability of these three proteins to modulate the expression of the major virulence factors, the M protein and the capsule, indicates that these proteins are structurally and functionally distinct from the kinases and phosphatases described in other microorganisms and play a key role in GAS pathogenesis.  相似文献   

8.
Abstract Two salivary components which specifically bind to Streptococcus mutans OMZ 175 (serotype f) 74K SR cell surface protein were purified from human whole saliva, free of immunoglobulins, by using affinity chromatography. Both components were eluted from the column in active monomeric forms having M r of 75 and 60 K. The two binding components were identified by WB analysis as free secretory component (SC) (75K) and as a 60K protein antigenically related to serum albumin (HSA).  相似文献   

9.
10.
11.
Adhesive interactions between Candida albicans and oral bacteria are generally thought to play a crucial role in the microbial colonization of denture acrylic, which may lead to denture stomatitis. This study investigated the influence of saliva on the adhesive interactions between C. albicans and Streptococcus sanguis or Actinomyces naeslundii on denture acrylic. First, bacteria were allowed to adhere to the acrylic surface from a flowing suspension, and subsequently yeasts were flowed over the acrylic surface. The organisms were assayed in the presence or absence of human whole saliva. All experiments were carried out in a parallel plate flow chamber and enumeration was done in situ with an image analysis system. In the absence of adhering bacteria, adhesion of C. albicans from buffer was more extensive than from saliva. However, in the presence of adhering bacteria, yeast adhesion from saliva was increased with respect to adhesion of yeasts from buffer, indicating that specific salivary components constitute a bridge between bacteria and yeasts. In all cases, yeast aggregates consisting of 3 to 5 yeast cells were observed adhering to the surface. A surface physico-chemical analysis of the microbial cell surfaces prior to and after bathing the microorganisms in saliva, suggests that this bridging is mediated by acid-base interactions since all strains show a major increase in electron-donating surface free energy parameters upon bathing in saliva, with no change in their zeta potentials. The surface physico-chemical analysis furthermore suggests that S. sanguis and A. naeslundii may use a different mechanism for adhesive interactions with C. albicans in saliva.  相似文献   

12.
Group A streptococcus (GAS) is a leading cause of severe, invasive human infections, including necrotizing fasciitis and toxic shock syndrome. An important element of the mammalian innate defense system against invasive bacterial infections such as GAS is the production of antimicrobial peptides (AMPs) such as cathelicidins. In this study, we identify a specific GAS phenotype that confers resistance to host AMPs. Allelic replacement of the dltA gene encoding d-alanine-d-alanyl carrier protein ligase in an invasive serotype M1 GAS isolate led to loss of teichoic acid d-alanylation and an increase in net negative charge on the bacterial surface. Compared to the wild-type (WT) parent strain, the GAS DeltadltA mutant exhibited increased susceptibility to AMP and lysozyme killing and to acidic pH. While phagocytic uptake of WT and DeltadltA mutants by human neutrophils was equivalent, neutrophil-mediated killing of the DeltadltA strain was greatly accelerated. Furthermore, we observed the DeltadltA mutant to be diminished in its ability to adhere to and invade cultured human pharyngeal epithelial cells, a likely proximal step in the pathogenesis of invasive infection. Thus, teichoic acid d-alanylation may contribute in multiple ways to the propensity of invasive GAS to bypass mucosal defenses and produce systemic infection.  相似文献   

13.
Epithelial cells are the initial sites of host invasion by group A Streptococcus pyogenes (GAS), and their infection of epithelial cells has been suggested to induce apoptosis. However, the mechanism responsible for bacteria–host interaction and the induction of apoptosis has not been clearly understood. We demonstrate here that human pharyngeal epithelial HEp-2 cells became apoptotic with DNA fragmentation by invasion of GAS strains JRS4 (M6+, F1+) and JRS145 (M6, F1+ mutant of JRS4), whereas apoptotic cellular changes were not observed in SAM1 (M6+, F1 mutant) or SAM2 (M6, F1 mutant) infected HEp-2 cells. Confocal microscopy revealed that Bax translocation to mitochondria and cytochrome c release occurred after 4 h of infection. Western blot analyses showed that the amounts of Bcl-2 and Bcl-xL were decreased in the mitochondria of infected cells. In addition, we demonstrated that the release of nuclear histone from infected cells was prevented by the addition of caspase-9 inhibitor (Ac-LEHD-CHO). We conclude that the internalization of GAS in epithelial cells is necessary and sufficient for the induction of apoptosis, which is initiated by mitochondrial dysfunction, and the mechanism of GAS-induced apoptosis is clearly different from that induced by other intracellular invasive bacteria, e.g. Shigella and Salmonella species.  相似文献   

14.
Antisera raised in response to proline-rich proteins purified from parotid secretions of man and the primate Macaca fascicularis were employed to investigate the interrelationships of these proteins by immunodiffusion, immunoelectrophoresis and the combined use of disc gel acrylamide electrophoresis with radial immunodiffusion. The major human proline-rich proteins, PRP I, PRP II, PRP III and PRP IV as well as several minor proline-rich proteins cross-react with antiserum to PRP I or PRP III. Similarly primate parotid saliva contains several components cross-reacting with antiserum directed against a purified primate proline-rich protein, MPRP. Antiserum to PRP I or PRP III cross-reacted with MPRP and primate parotid saliva protein, whereas antiserum to MPRP cross-reacted only with human parotid saliva protein and not with the isolated human proline-rich proteins. The immunological relationships of these salivary proline-rich proteins within and between species suggest their origin from a common precursor molecule.  相似文献   

15.
16.
Autophagy in innate immunity against intracellular bacteria   总被引:1,自引:0,他引:1  
Many pathogenic bacteria can invade phagocytic and non-phagocytic cells and colonize them intracellularly, then become disseminated to other cells. The endocytic degradation pathway is thought to be the only prevention against such intracellular pathogens. Autophagy, a fundamental cellular homeostasis pathway that operates with the intracellular degradation/recycling system, causes the turnover of cellular components by delivering portions of the cytoplasm and organelles to lysosomes. Recently, we reported that autophagic degradation is a previously unrecognized effector of host innate immunity. Streptococcus pyogenes (Group A Streptococcus; GAS) successfully enters human epithelial cells via endocytosis. GAS immediately escapes from the endosomes to the cytoplasm and gains a replicative niche, after which GAS in the cytoplasm is trapped in autophagosome-like compartments and degraded upon fusion with lysosomes. This process indicates that autophagy plays a protective role in infectious diseases. We also found that autophagic degradation was induced against Staphylococcus aureus, while methicillin-resistant S. aureus were resistant to autophagic degradation. The present review focuses on the protective function of autophagy against bacterial invasion of cells.  相似文献   

17.
Bacterial aggregation is an important step in elimination from the human body to protect against infection. Streptococcus intermedius K1K aggregates in human saliva. In this study, the salivary agglutinin was identified. The aggregation level was very strong in sonic-treated saliva and 1-microm filtrate. Preincubation of human saliva with anti-human alpha chain serum or anti-human whole saliva serum completely inhibited aggregation, but preincubation with anti-human micro chain serum or anti-Fc fragment of human IgG serum had no effect. Agglutinin of human saliva that could aggregate the strain K1K was purified using DEAE-Sepharose CL-6B, Phenyl-Sepharose CL-4B and Sephacryl S200HR gel filtration. Purified salivary agglutinin was characterized with electrophoresis and immunological techniques, indicating that purified material was IgA. Bacterial aggregation was dependent on the presence of calcium. Saliva filtrate specimens from eight healthy men and eight women showed different aggregation activities. Three men and one woman had little activity. These data show that the present bacterial aggregation was an immunoreaction between IgA in saliva and the bacteria dependent on the levels of calcium. In addition, the IgA in human saliva related with possible calcium-dependent antigen(s) on the surface of strain K1K.  相似文献   

18.
Group A Streptococcus (GAS) is a leading human pathogen producing a diverse array of infections from simple pharyngitis (“strep throat”) to invasive conditions, including necrotizing fasciitis and toxic shock syndrome. The surface-anchored GAS M1 protein is a classical virulence factor that promotes phagocyte resistance and exaggerated inflammation by binding host fibrinogen (Fg) to form supramolecular networks. In this study, we used a virulent WT M1T1 GAS strain and its isogenic M1-deficient mutant to examine the role of M1-Fg binding in a proximal step in GAS infection-interaction with the pharyngeal epithelium. Expression of the M1 protein reduced GAS adherence to human pharyngeal keratinocytes by 2-fold, and this difference was increased to 4-fold in the presence of Fg. In stationary phase, surface M1 protein cleavage by the GAS cysteine protease SpeB eliminated Fg binding and relieved its inhibitory effect on GAS pharyngeal cell adherence. In a mouse model of GAS colonization of nasal-associated lymphoid tissue, M1 protein expression was associated with an average 6-fold decreased GAS recovery in isogenic strain competition assays. Thus, GAS M1 protein-Fg binding reduces GAS pharyngeal cell adherence and colonization in a fashion that is counterbalanced by SpeB. Inactivation of SpeB during the shift to invasive GAS disease allows M1-Fg binding, increasing pathogen phagocyte resistance and proinflammatory activities.  相似文献   

19.
Streptococcus pyogenes (group A streptococcus, GAS), one of the most common pathogens of humans, attaches and invades into human pharyngeal or skin epithelial cells. We have previously reported that induction of apoptosis is associated with GAS invasion, which induces mitochondrial dysfunction and apoptotic cell death. We demonstrate here that GAS‐induced apoptosis is mediated by reactive oxygen species (ROS) production. Both the induction of apoptosis and ROS production markedly increased upon invasion of wild‐type GAS strain JRS4 into HeLa cells; however, the apoptotic response was not observed in fibronectin‐binding protein F1‐disrupted mutant SAM1‐infected cells. In Bcl‐2‐overexpressing HeLa cells (HBD98‐2‐4), the induction of apoptosis, ROS production and mitochondrial dysfunction were significantly suppressed, whereas the numbers of invaded GAS was not different between HeLa (mock cells) and the HeLa HBD98‐2‐4 cells. Whereas Rac1 activation occurred during GAS invasion, ROS production in GAS‐infected cells was clearly inhibited by transfection with the Rac1 mutants (L37 or V12L37), but not by the dominant active mutant (V12L61) or by the dominant negative mutant (N17). These observations indicate that GAS invasion triggers ROS production through Rac1 activation and generated ROS induced mitochondrial dysfunction leading to cellular apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号