首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
Ichie  T.  Kitahashi  Y.  Matsuki  S.  Maruyama  Y.  Koike  T. 《Photosynthetica》2002,40(2):289-292
The practicality of the portable, non-destructive type nitrogen meter (Agriexpert PPW-3000) was tested on ten forest species. Also investigated was the potential relationship between leaf nitrogen and chlorophyll (Chl) contents and the readings taken with the PPW-3000 and a Chl meter (SPAD-502). There was a significantly positive correlation between the readings of PPW-3000 and N content in the same leaves, whereas the correlation between leaf Chl content and the PPW-3000 values was less positive. Similarly there was a significant positive correlation between actual Chl content and the SPAD-502 readings and the less positive correlation between actual N content and the SPAD-502 readings. Thus using both the PPW-3000 and SPAD-502 enables to determine leaf N and Chl contents simply and non-destructively in the field.  相似文献   

2.
Chlorophyll (Chl) and epidermal polyphenol (EPhen) contents were estimated in vivo using two optical leaf-clips, SPAD-502 and Dualex, respectively. The area-based measurements were transformed into mass-based data by taking into account the leaf dry mass per area (LMA). Measurements were performed on forest trees and on saplings grown under controlled conditions. While LMA increased with irradiance along a vertical transect in a beech canopy or in saplings grown under different and increasing irradiance levels, mass-based EPhen (EPhen(m)) increased, whereas mass-based Chl (Chl(m)) decreased. This was a signature of a gradual switch of investment from protein into polyphenol production. A similar signature was obtained in saplings grown on nitrogen-deficient soil with respect to fertilized controls. However, nitrogen effects remained moderate compared to irradiance-induced effects. EPhen(m) and Chl(m) both declined with plant ageing-induced increases in LMA, under all tested growth conditions. This was a signature of an accumulation of dry matter that diluted Chl and EPhen. The described competition between Chl and EPhen in leaves fits well with the predictions of the Protein Competition Model (PCM), that is, that the total leaf mass-based polyphenols content (Phen(t)) is controlled by the competition between protein and polyphenol biosynthetic pathways and its metabolic regulation.  相似文献   

3.
At present, chlorophyll meters are widely used for a quick and nondestructive estimate of chlorophyll (Chl) contents in plant leaves. Chl meters allow to estimate the Chl content in relative units - the Chl index (CI). However, using such meters, one can face a problem of converting CI into absolute values of the pigment content and comparing data acquired with different devices and for different plant species. Many Chl meters (SPAD-502, CL-01, CCM-200) demonstrated a high degree of correlation between the CI and the absolute pigment content. A number of formulas have been deduced for different plant species to convert the CI into the absolute value of the photosynthetic pigment content. However, such data have not been yet acquired for the atLEAF+ Chl meter. The purpose of the present study was to assess the applicability of the atLEAF+ Chl meter for estimating the Chl content. A significant species-specific exponential relationships between the atLEAF value (corresponding to CI) and extractable Chl a, Chl b, Chl (a+b) for Calamus dioicus and Cleistanthus sp. were shown. The correlations between the atLEAF values and the content of Chl a, Chl b, and Chl (a+b) per unit of leaf area was stronger than that per unit of dry leaf mass. The atLEAF value- Chl b correlation was weaker than that of atLEAF value-Chl a and atLEAF value-Chl (a+b) correlations. The influence of light conditions (Chl a/b ratio) on the atLEAF value has been also shown. The obtained results indicated that the atLEAF+ Chl meter is a cheap and convenient tool for a quick nondestructive estimate of the Chl content, if properly calibrated, and can be used for this purpose along with other Chl meters.  相似文献   

4.
The aim of this work was to assess the effect of leaf thickness, leaf succulence (LS), specific leaf area (SLA), specific leaf mass (Ws) and leaf water content (LWC) on chlorophyll (Chl) meter values in six Amazonian tree species (Carapa guianensis, Ceiba pentandra, Cynometra spruceana, Pithecolobium inaequale, Scleronema micranthum and Swietenia macrophylla). We also tested the accuracy of a general calibration equation to convert Minolta Chl meter (SPAD-502) readings into absolute Chl content. On average, SPAD values (x) increased with fresh leaf thickness (FLT [μm] = 153.9 + 0.98 x, r 2 = 0.06**), dry leaf thickness (DLT [μm] = 49.50 + 1.28 x, r 2 = 0.16**), specific leaf mass (Ws [g (DM) m−2] = 6.73 + 1.31 x, r 2 = 0.43**), and leaf succulence (LS [g(FM)] m−2 = 94.2 + 1.58 x, r 2 = 0.19**). However, a negative relationship was found between SPAD values and either specific leaf area [SLA (m2 kg−1) = 35.1 − 0.37 x, r 2 = 0.38**] or the leaf water content (LWC [%]= 80.0 − 0.42 x, r 2 = 0.58**). Leaf Chl contents predicted by the general calibration equation significantly differed (p<0.01) from those estimated by species-specific calibration equations. We conclude that to improve the accuracy of the SPAD-502 leaf thickness and LWC should be taken into account when calibration equations are to be obtained to convert SPAD values into absolute Chl content.  相似文献   

5.
The portable chlorophyll meter (SPAD-502) has been successfully used for a rapid and direct estimation of total chlorophyll content (TCHL) in the leaves of some crops. In this work, SPAD-502 meter readings and TCHL concentration were compared for the leaves of Amaranthus vlitus L., a common weed. SPAD readings were linearly and positively correlated to TCHL concentration in the leaves. A linear correlation was also shown between SPAD-502 readings and some physiological parameters of the leaves, such as photosynthesis, transpiration, and stomatal conductance.  相似文献   

6.
New spectral absorption photometry methods are introduced to estimate chlorophyll (Chl) content of corn leaves by smart phones. The first method acquires light passing through a leaf by smartphone camera, compensating for differences in illumination conditions. In order to improve performance of the method, spectral absorption photometry (SAP) with background illumination has been considered as well. Data were acquired by smartphone camera in Iowa State University maize fields. Various indices were extracted and their correlation with Chl content were examined by Minolta SPAD-502. Hue index in SAP reached R 2 value of 0.59. However, with light-aided SAP (LASAP), R 2 of 0.97 was obtained. Among traits, the vegetation index gave the most accurate indication. We can conclude that the high performance of LASAP method for estimating Chl content, leads to new opportunities offered by smart phones at much lower cost. This is a highly accurate alternative to SPAD meters for estimating Chl content nondestructively.  相似文献   

7.
Russian Journal of Plant Physiology - The portable chlorophyll (Chl) meter SPAD-502 Plus (Konica Minolta Optics, Japan) is one of the most commonly used diagnostic tools for rapid and...  相似文献   

8.
水稻生育后期叶绿素含量的QTLs及其与环境的互作分析   总被引:2,自引:0,他引:2  
利用Dular和Lemont杂交后代单粒传衍生的123个F12家系所组成的重组自交系(RILs)群体,研究水稻剑叶叶绿素含量的数量性状基因座(QTL).分别在2005年和2006年考察该RIL群体齐穗期剑叶叶绿素含量,并进行QTL定位和上位性分析及其与环境的互作效应分析.结果表明:在4对染色体上共检测到10个控制叶绿素含量的加性QTLs,共解释了73.51%的遗传变异,单个QTL的表型贡献率为2.08%~20.14%,其中6个和环境存在显著互作;同时也检测到13对影响叶绿素含量的加性×加性上位性互作,其中6对具有显著的上位性环境互作效应.  相似文献   

9.
Calibration of the Minolta SPAD-502 leaf chlorophyll meter   总被引:24,自引:0,他引:24  
Use of leaf meters to provide an instantaneous assessment of leaf chlorophyll has become common, but calibration of meter output into direct units of leaf chlorophyll concentration has been difficult and an understanding of the relationship between these two parameters has remained elusive. We examined the correlation of soybean (Glycine max) and maize (Zea mays L.) leaf chlorophyll concentration, as measured by organic extraction and spectrophotometric analysis, with output (M) of the Minolta SPAD-502 leaf chlorophyll meter. The relationship is non-linear and can be described by the equation chlorophyll (mol m–2)=10(M0.265), r 2=0.94. Use of such an exponential equation is theoretically justified and forces a more appropriate fit to a limited data set than polynomial equations. The exact relationship will vary from meter to meter, but will be similar and can be readily determined by empirical methods. The ability to rapidly determine leaf chlorophyll concentrations by use of the calibration method reported herein should be useful in studies on photosynthesis and crop physiology.Abbreviations Chl- chlorophyll - M- SPAD-502 meter value  相似文献   

10.
In three separate experiments, the effectiveness of a SPAD-502 portable chlorophyll (Chl) meter was evaluated for estimating Chl content in leaves of Eugenia uniflora seedlings in different light environments and subjected to soil flooding. In the first experiment, plants were grown in partial or full sunlight. In the second experiment plants were grown in full sunlight for six months and then transferred to partial sunlight or kept in full sunlight. In the third experiment plants were grown in a shade house (40% of full sunlight) for six months and then transferred to partial shade (25–30% of full sunlight) or full sunlight. In each experiment, plants in each light environment were either flooded or not flooded. Non-linear regression models were used to relate SPAD values to leaf Chl content using a combination of the data obtained from all three experiments. There were no significant effects of flooding treatments or interactions between light and flooding treatments on any variable analyzed. Light environment significantly affected SPAD values, chlorophyll a (Chl a), chlorophyll b (Chl b), and total chlorophyll [Chl (a+b)] contents in Experiment I (p≤0.01) and Experiment III (p≤0.05). The relationships between SPAD values and Chl contents were very similar among the three experiments and did not appear to be influenced by light or flooding treatments. There were high positive exponential relationships between SPAD values and Chl (a+b), Chl a, and Chl b contents.  相似文献   

11.
叶绿素计SPAD-502在林业上应用   总被引:35,自引:0,他引:35  
叶绿素是植物光合作用的色素,传统方法测定叶绿素一般采用分光光度法.本研究采用便携式叶绿素计SPAD-502测定落叶松人工林下4个主要阔叶树种绿色度(SPAD值)的季节变化,并与分光光度法测定的叶绿素含量进行相关性分析.结果表明,SPAD值与叶绿素含量具有显著的相关性,SPAD值能较好地反映树木叶绿素含量的变化.因此,使用叶绿素计测定树木的叶绿素含量是完全可行的,在一定条件下可代替叶绿素含量的直接测定.由于叶绿素计SPAD-502携带方便、测定简便、迅速,且不损坏叶片,应在林业研究中积极推广使用.  相似文献   

12.
 在甘肃民勤沙生植物园内利用植物蒸腾耗水量观测场,研究了两种优势旱生植物沙木蓼(Atraphaxis frutescens)和沙枣(Elaeagnus angustifolia)叶片中的叶绿素、可溶性糖、淀粉和N、P、K含量等对不同地下水深度(1~3.4 m)的响应。结果表明:1) 1.4 m、2.4 m和3.4 m 3种不同的地下水深度处理,产生了3种差异显著的土壤水分梯度;2) 地下水深度的变化导致了这两种旱生植物叶绿素a、叶绿素b、叶绿素总量、叶绿素a与叶绿素b的比值等的显著变化(p<0.01);3) 地下水深度的增加引起了两种植物叶片可溶性糖含量的升高和淀粉含量的降低;4) 地下水深度的增加引起了两种植物叶片中N、P、K含量的降低;5) 不同的地下水深度引起沙枣和沙木蓼叶绿素a、叶绿素b、叶绿素总量、叶绿素a与叶绿素b的比值、N、P、K含量、可溶性糖和淀粉增加或减少的程度不同。沙枣是非豆科固氮植物,两者的差异是否与固氮作用相关还有待于进一步研究。  相似文献   

13.
在甘肃民勤沙生植物园内利用植物蒸腾耗水量观测场,研究了两种优势旱生植物沙木蓼(Atraphaxis frutescens)和沙棘(Elaeagnus angustifolia)叶片中的叶绿素、可溶性糖,淀粉和N、P、K、含量等对不同地下水深度(1-3.4m)的响应。结果表明:1)1.4m,2.4m和3.4m 3种不同地的地下水深度处理,产生了3种差异显著的土壤水分梯度;2)地下水深度的变化导致了这两种旱生植物叶绿素a、叶绿素b、叶绿素总量、叶绿素a与叶绿素b的比值等的显著变化(P<0.01);3)地下水深度的增加引起了两种植物叶片可溶性糖含量的升高和淀粉含量的降低;4)地下水深度的增加引起了两种植物叶片中N、P、K含量的降低;5)不同的地下水深度引起沙棘和沙木蓼叶绿素a、叶绿素b、叶绿素总量、叶绿素a与叶绿素b的比值、N、P、K含量,可溶性糖和淀粉增加或减少的程度不同。沙棘是非豆科固氮植物,两者的差异是否与固氮作用相关还有待于进一步研究。  相似文献   

14.
Leaf chlorophyll content may be used as an indirect indicatorof crop nitrogen status. Chlorophyll meter values (SPAD values)taken with the Minolta SPAD-502 chlorophyll meter in the shadeplantOxalis acetosellaL. and in winter wheat (Triticum aestivumL.)varied by 15 and 8%, respectively, with variation in irradiance.The lowest SPAD-values were measured at high irradiance. Duringa natural night-day-night cycle SPAD values for winter wheatwere lowest in the middle of the day, highest at low irradianceat dusk and dawn and intermediate in darkness before dawn andafter dusk. The results indicate that irradiance during measurementshould be considered when using the Minolta SPAD-502 chlorophyllmeter for the estimation of crop N-status.Copyright 1998 Annalsof Botany Company Chlorophyll meter, nitrogen, irradiance,Oxalis acetosellaL.,Triticum aestivumL., winter wheat.  相似文献   

15.
The SPAD-502 meter is a hand-held device that is widely used for the rapid, accurate and non-destructive measurement of leaf chlorophyll concentrations. It has been employed extensively in both research and agricultural applications, with a range of different plant species. However, its utility has not been fully exploited in relation to the most intensively studied model organism for plant science research, Arabidopsis thaliana. Measurements with the SPAD-502 meter produce relative SPAD meter values that are proportional to the amount of chlorophyll present in the leaf. In order to convert these values into absolute units of chlorophyll concentration, calibration curves must be derived and utilized. Here, we present calibration equations for Arabidopsis that can be used to convert SPAD values into total chlorophyll per unit leaf area (nmol/cm2; R 2 = 0.9960) or per unit fresh weight of leaf tissue (nmol/mg; R 2 = 0.9809). These relationships were derived using a series of Arabidopsis chloroplast biogenesis mutants that exhibit chlorophyll deficiencies of varying severity, and were verified by the subsequent analysis of senescent or light-stressed leaves. Our results revealed that the converted SPAD values differ from photometric measurements of solvent-extracted chlorophyll by just ~6% on average.  相似文献   

16.
According to the theory of optimal nitrogen partitioning within a leaf, the chlorophyll (Chl) a/b ratio is expected to increase when leaf N content decreases. Here, we report the first empirical support for this prediction. The Chl a/b ratio increased while Chl content decreased in response to N limitation in photosynthetic cotyledons and leaves of seedlings of four tropical woody species in the Bignoniaceae. The responses of all four species were in the same direction, but differed in magnitude. For Tabebuia rosea, the species that exhibited the greatest increase in Chl a/b ratios (up to values of 5.9), detailed photosynthetic characteristics were also examined. Light and N availability were positively correlated with the light- and CO2-saturated photosynthetic O2 evolution rate, as well as with leaf carboxylation capacity (Vcmax) and electron transport rate (Vj). Severe N limitation and high light did not cause chronic photo-inhibition (i.e. no change in quantum yield or in dark-acclimated Fv/Fm). The observed change in the ratio of Vcmax to leaf N in response to N availability was consistent with likely functional reasons for change in the Chl a/b ratio. Adjustment of the Chl a/b ratio was apparently an integral feature of acclimation to high light conditions and low N availability.  相似文献   

17.
Urban trees are frequently subjected to stress-causing environmental factors and cultural practices, requiring a permanent monitoring of their health condition. Stress detection in woody plants usually relies on a visual assessment of symptoms: inventories are mostly based on the parameters of the percentage of foliage reduction and leaf colour, both of which require a subjective interpretation. The main goal of this study was to detect whether the foliar chlorophyll (Chl) and nitrogen contents of linden trees, in an urban environment, can be useful and objective diagnostic indicators of the plant health and physiological performance, and whether it was possible to evaluate these data through a quick technique. Furthermore, as the ectomycorrhizal (ECM) community is a well-known bioindicator of the plant health status, its potential association with both variations in the Chl content and the different degrees of tree decline was verified. By determining the mathematical relationship between the instrument (SPAD-502) readings, the foliar Chl and nitrogen contents and the association with significant variations in the ECM community, the different stages of the visual symptoms of decline were accurately determined. This approach should help to integrate the methodology used for tree health inventories with new universal methods that do not entail individual interpretation.  相似文献   

18.
A field experiment was conducted with two cassava cultivars and eight levels of nitrogen to examine the relationship between extractable chlorophyll (Chl) content of cassava leaves and both the Chl meter value (SPAD) and leaf colour chart (LCC) score. The SPAD, LCC, and Chl a+b content were influenced by leaf position, growth stage, cultivar (cv.), and N fertilization. The cvs. and N fertilization had significant effect on SPAD, LCC, and Chl a+b content of youngest fully expanded leaf (leaf 1) blade in most cases. An F-test indicated that common equations pooled across cvs., N fertilization, and growth stages could be used to describe the relationships between Chl a+b content and LCC and between SPAD and LCC, but not between SPAD and Chl a+b content. Relationships between tuber yield and SPAD, LCC, and Chl a+b content were significant (p<0.05) and positive at 30 and 60 d after planting. Thus LCC and SPAD can be used to estimate leaf Chl content which is an indicator of leaf N status.  相似文献   

19.
A non-destructive determination of leaf chlorophyll in Vitis vinifera   总被引:1,自引:0,他引:1  
A portable leaf greenness meter (SPAD-501) has been used to provide a rapid and non-destructive measurement of leaf chlorophyll in Vitis vinifera. Leaf extracted chlorophyll was related linearly to SPAD readings. It is suggested that separate linear equations should be developed for each cultivar so as to maximise the accuracy of estimating leaf chlorophyll content as a function of SPAD readings.  相似文献   

20.
The amounts of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), total chlorophyll (Chl), and total leaf nitrogen were measured in fully expanded, young leaves of wheat (Triticum aestivum L.), rice (Oryza sativa L.), spinach (Spinacia oleracea L.), bean (Phaseolus vulgaris L.), and pea (Pisum sativum L.). In addition, the activities of whole-chain electron transport and carbonic anhydrase were measured. All plants were grown hydroponically at different nitrogen concentrations. Although a greater than proportional increase in Rubisco content relative to leaf nitrogen content and Chl was found with increasing nitrogen supply for rice, spinach, bean, and pea, the ratio of Rubisco to total leaf nitrogen or Chl in wheat was essentially independent of nitrogen treatment. In addition, the ratio of Rubisco to electron transport activities remained constant only in wheat. Nevertheless, gas-exchange analysis showed that the in vivo balance between the capacities of Rubisco and electron transport in wheat, rice, and spinach remained almost constant, irrespective of nitrogen treatment. The in vitro carbonic anhydrase activity in wheat was very low and strongly responsive to increasing nitrogen content. Such a response was not found for the other C3 plants examined, which had 10- to 30-fold higher carbonic anhydrase activity than wheat at any leaf-nitrogen content. These distinctive responses of carbonic anhydrase activity in wheat were discussed in relation to CO2-transfer resistance and the in vivo balance between the capacities of Rubisco and electron transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号