首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Aberrant promoter DNA hypermethylation of tumor suppressor genes is a hallmark of cancer. This alteration is largely dependent on the action of de novo DNA methyltransferases (DNMTs) early during tumor progression, which supports the oncogenic role for these enzymes. However, recent research has identified several inactivating mutations of de novo DNMTs in various types of tumor. In addition, it has been shown that loss of de novo DNA methylation activity at advanced tumor stages leads to the promoter DNA demethylation-dependent expression of specific oncogenes. These new data support the notion that de novo DNMTs also have an important role in the maintenance of DNA methylation and suggest that, in addition to acting as oncogenes, they also behave as tumor suppressors. This potential dual role might have clinical implications, as DNMTs are currently considered bona fide targets in cancer therapy.  相似文献   

5.
The realization that microRNAs are intimately linked to cancer pathogenesis has spawned an explosion of research activity in recent years. Their presence is not merely predictive of tumor origin and behavior, they are causally linked to the emergence and development of cancer by acting as oncogenes or tumor suppressors. The understanding of the functional consequences of altered microRNA expression in cancer is progressing rapidly, even though the prediction of microRNA targets is still a hit and miss process. MicroRNAs may not act primarily by strongly reducing the expression of a few prominent cancer-regulatory genes, but by influencing the properties of the network of which these regulators are a central part. By coordinately regulating many genes, microRNAs are exquisitely suited to act as stabilizers of networks and to prevent extreme variations in phenotype due to intrinsic and extrinsic disturbances. Many advanced tumors show defects in microRNA expression and processing, which could increase phenotypic variability within tumors. This allows small subsets of cells with altered characteristics to emerge, which can have grave consequences as typically a small fraction of tumor cells is responsible for metastasis and treatment resistance, and ultimately treatment failure. Investigating microRNAs from the perspective of master regulators of network stability in cancer calls for new experimental approaches and may help to understand causes of cancer heterogeneity and disease progression.  相似文献   

6.
7.
8.
Over 200 revertants that suppressed three or more UAA markers were isolated in a haploid strain of yeast, Saccharomyces cerevisiae, containing the ψ+ cytoplasmic determinant which increases the efficiency of action of certain suppressors. These revertants were grouped into classes on the basis of suppression of four nutritional markers and the canavanine-resistant marker can1–100, and on the basis of the efficiency of suppression of the cyc1–72 marker which contains a defined UAA mutant codon corresponding to position 06 in iso-1-cytochrome c. Genetic analysis and other tests indicated that 40% of the suppressors were highly efficient and were allelic to one or another of the known tyrosine-inserting suppressors, that 59% of the suppressors were moderately efficient and were allelic to either the previously known serine-inserting suppressor SUP16 or to the newly discovered serine-inserting suppressor SUP17, and that 1% of the suppressors were inefficient and were allelic to the newly discovered SUP26 suppressor. The SUP16 suppressors were shown to be allelic to the previously characterized suppressor SUQ5 whose locus is on the right arm of chromosome XVI. This location and the pattern of suppression suggests that the SUP16 locus may be identical to the previously described SUP15 locus. Genetic analysis established that the newly discovered SUP17 locus is on the left arm of chromosome IX, between the his6 and lys11 markers. The examination of four different strains revealed that the SUP16 and SUP17 suppressors cause insertion of serine in iso-1-cytochrome c at the UAA site of the cyc1–72 mutant. It is suggested that the gene products of the SUP16 and SUP17 loci are redundant forms of the same serine transfer RNA. Because viable haploid strains containing both suppressors were obtainable, it was concluded that SUP16 and SUP17 could not be the sole genes coding for the only UCA-decoding species of serine tRNA.  相似文献   

9.
An electrochemical indirect competitive immunoassay protocol as a promising cytosensing strategy was developed to detect integrin β1 expression on human breast cancer MCF-7 cells and adriamycin-resistant human breast cancer MCF-7 (MCF-7/ADR) cells and quantify the cell number. Integrin α5β1 was adsorbed on the gold-nanoparticle modified glassy carbon electrode to bind integrin β1 monoclonal antibody (anti-CD29 mAb). A sandwich structure was then formed using nanocomposites which consisted of horseradish peroxidase (HRP) labeled anti-antibody and gold nanoparticles. HRP bound on the electrode surface could cause an amperometric response of the hydroquinone-H(2)O(2) system. The assembly of the sandwich structure was inhibited by tumor cells to give decreased enzyme-catalytic signals due to the capture of anti-CD29 mAb by integrin β1 on cell membranes. Under optimal conditions the relative current change (S) was proportional to the cell concentration from 1.6×10(3) to 2.0×10(6)cellsmL(-1) with a detection limit of 700cellsmL(-1). Integrin β1 expression in MCF-7/ADR cells was found to be significantly higher than that in MCF-7 cells, indicating the increased adhesion ability of MCF-7/ADR cells.  相似文献   

10.
11.
12.

Background

A department’s learning climate is known to contribute to the quality of postgraduate medical education and, as such, to the quality of patient care provided by residents. However, it is unclear how the learning climate is perceived over time.

Objectives

This study investigated whether the learning climate perceptions of residents changed over time.

Methods

The context for this study was residency training in the Netherlands. Between January 2012 and December 2014, residents from 223 training programs in 39 hospitals filled out the web-based Dutch Residency Educational Climate Test (D-RECT) to evaluate their clinical department’s learning climate. Residents had to fill out 35 validated questions using a five point Likert-scale. We analyzed data using generalized linear mixed (growth) models.

Results

Overall, 3982 D-RECT evaluations were available to investigate our aim. The overall mean D-RECT score was 3.9 (SD = 0.3). The growth model showed an increase in D-RECT scores over time (b = 0.03; 95% CI: 0.01–0.06; p < 0.05).

Conclusions

The observed increase in D-RECT scores implied that residents perceived an improvement in the learning climate over time. Future research could focus on factors that facilitate or hinder learning climate improvement, and investigate the roles that hospital governing committees play in safeguarding and improving the learning climate.  相似文献   

13.
The global trend of the phenomenon of population ageing has dramatic consequences on public health and the incidence of neurodegenerative diseases. Physiological changes that occur during normal ageing of the brain may exacerbate and initiate pathological processes that may lead to neurodegenerative disorders, especially Alzheimer's disease (AD). Hence, the risk of AD rises exponentially with age. While there is no cure currently available, sufficient intake of certain micronutrients and secondary plant metabolites may prevent disease onset. Polyphenols are highly abundant in the human diet, and several experimental and epidemiological evidences indicate that these secondary plant products have beneficial effects on AD risks. This study reviews current knowledge on the potential of polyphenols and selected polyphenol-rich diets on memory and cognition in human subjects, focusing on recent data showing in vivo efficacy of polyphenols in preventing neurodegenerative events during brain ageing and in dementia. Concentrations of polyphenols in animal brains following oral administration have been consistently reported to be very low, thus eliciting controversial discussion on their neuroprotective effects and potential mechanisms. Whether polyphenols exert any direct antioxidant effects in the brain or rather act by evoking alterations in regulatory systems of the brain or even the body periphery is still unclear. To understand the mechanisms behind the protective abilities of polyphenol-rich foods, an overall understanding of the biotransformation of polyphenols and identification of the various metabolites arising in the human body is also urgently needed.  相似文献   

14.
Alzheimer's disease (AD) is the most common progressive neurodegenerative disease. Today, AD affects millions of people worldwide and the number of AD cases will increase with increased life expectancy. The AD brain is marked by severe neurodegeneration like the loss of synapses and neurons, atrophy and depletion of neurotransmitter systems in the hippocampus and cerebral cortex. Recent findings suggest that these pathological changes are causally induced by mitochondrial dysfunction and increased oxidative stress. These changes are not only observed in the brain of AD patients but also in the periphery. In this review, we discuss the potential role of elevated apoptosis, increased oxidative stress and especially mitochondrial dysfunction as peripheral markers for the detection of AD in blood cells especially in lymphocytes. We discuss recent not otherwise published findings on the level of complex activities of the respiratory chain comprising mitochondrial respiration and the mitochondrial membrane potential (MMP). We obtained decreased basal MMP levels in lymphocytes from AD patients as well as enhanced sensitivity to different complex inhibitors of the respiratory chain. These changes are in line with mitochondrial defects obtained in AD cell and animal models, and in post-mortem AD tissue. Importantly, these mitochondrial alterations where not only found in AD patients but also in patients with mild cognitive impairment (MCI). These new findings point to a relevance of mitochondrial function as an early peripheral marker for the detection of AD and MCI.  相似文献   

15.
It is well established that lipid metabolism is drastically altered during tumor development and response to therapy. Choline kinase alpha (ChoKα) is a key mediator of these changes, as it represents the first committed step in the Kennedy pathway of phosphatidylcholine biosynthesis and ChoKα expression is upregulated in many human cancers. ChoKα activity is associated with drug resistant, metastatic, and malignant phenotypes, and represents a robust biomarker and therapeutic target in cancer. Effective ChoKα inhibitors have been developed and have recently entered clinical trials. ChoKα's clinical relevance was, until recently, attributed solely to its production of second messenger intermediates of phospholipid synthesis. The recent discovery of a non-catalytic scaffolding function of ChoKα may link growth receptor signaling to lipid biogenesis and requires a reinterpretation of the design and validation of ChoKα inhibitors. Advances in positron emission tomography, magnetic resonance spectroscopy, and optical imaging methods now allow for a comprehensive understanding of ChoKα expression and activity in vivo. We will review the current understanding of ChoKα metabolism, its role in tumor biology and the development and validation of targeted therapies and companion diagnostics for this important regulatory enzyme. This comes at a critical time as ChoKα-targeting programs receive more clinical interest.  相似文献   

16.
17.
18.
Acute intermittent porphyria (AIP) or precursor syndrome is a well described neuropathic clinical entity with incompletely known etiology. The most prominent biological abnormalities associated with this syndrome are elevations in serum and hepatic -aminolevulinic acid (ALA) and porphobilinogen (PBG). We determined the impact of ALA and PBG on human neuroblastoma and glioblastoma tumor cell survival as measured by the MTT assay. ALA proved to be cytotoxic in neuroblastoma cells, while PBG lacked cytotoxic effects. This cytotoxic effect of ALA could be enhanced by deferoxamine and diminished by heme, presumably through modulation of ALA synthesis. In conclusion, ALA excess may prove to be associated with the development of neuropathy in AIP.  相似文献   

19.
Many insect parasitoids that deposit their eggs inside immature stages of other insect species inactivate the cellular host defence to protect the growing embryo from encapsulation. Suppression of encapsulation by polydnavirus-encoded immune-suppressors correlates with specific alterations in hemocytes, mainly cytoskeletal rearrangements and actin-cytoskeleton breakdown. We have previously shown that the Cotesia rubecula polydnavirus gene product CrV1 causes immune suppression when injected into the host hemocoel. CrV1 is taken up by hemocytes although no receptors have been found to bind the protein. Instead CrV1 uptake depends on dimer formation, which is required for interacting with lipophorin, suggesting a CrV1-lipophorin complex internalisation by hemocytes. Since treatment of hemocytes with oligomeric lectins and cytochalasin D can mimic the effects of CrV1, we propose that some dimeric and oligomeric adhesion molecules are able to cross-link receptors on the cell surface and depolymerise actin by leverage-mediated clearance reactions in the hemolymph.  相似文献   

20.
Significant bodies of evidences have shown different mechanisms known to be the etiological cause of Alzheimer’s disease (AD) involving amyloid-beta protein accumulation, chronic inflammatory reactions, oxidative stress, proteasome inhibition, and high-cholesterol level, but the presize etiology of AD still remains enigmatic. Recent studies indicate that these mechanisms seem to be interlinked, and neuroinflammation emerges as a major regulatory and commen factor in all these mechanisms. In amyloid-beta protein, induced neurodegenerative hypothesis of AD inflammatory cytokines IFN-γ, TNF-α, interleukin (IL)-1α plays an important role in the progression of the disease. In cholesterol induced hypothesis liver X receptor mediated IL-4 also plays a major role in the progression of neuroinflammation. Notably, Omi and HtrA2 proteases play very important functions in neuronal dysfunction, which may lead to neurodegeneration. Further at genetic level, alterations in the genes occur especially in APP, PSEN1, PSEN2, APO E(ε4), ADAM12, and SH3MD1 which mediate neurodegeneration. Additionaly, The role of SP-1, NF-κB, and BCAE-1 is critical in the regulation of neuroinflammation-associated disease pathogenesis. All together, in this review, we discus the importance of neuroinflammatory mediators and their mechanistic role in the process of AD neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号