首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Myosin II motors play several important roles in a variety of cellular processes, some of which involve active assembly/disassembly of cytoskeletal substructures. Myosin II motors have been shown to function in actin bundle turnover in neuronal growth cones and in the recycling of actin filaments during cytokinesis. Close examination had shown an intimate relationship between myosin II motor adenosine triphosphatase activity and actin turnover rate. However, the direct implication of myosin II in actin turnover is still not understood. Herein, we show, using high-resolution cryo-transmission electron microscopy, that myosin II motors control the turnover of actin bundles in a concentration-dependent manner in vitro. We demonstrate that disassembly of actin bundles occurs through two main stages: the first stage involves unbundling into individual filaments, and the second involves their subsequent depolymerization. These evidence suggest that, in addition to their “classical” contractile abilities, myosin II motors may be directly implicated in active actin depolymerization. We believe that myosin II motors may function similarly in vivo (e.g., in the disassembly of the contractile ring by fine tuning the local concentration/activity of myosin II motors).  相似文献   

2.
The mechanism by which motor proteins hydrolyze ATP and move along cytoskeletal filaments is still unknown. One approach to deciphering the mechanism is to correlate steps of ATP hydrolysis with structural states of the motors to determine the changes the motors undergo during the hydrolysis cycle. Unfortunately, available crystal structures represent only a few steps of the cycle and obtaining atomic structures that represent the motors bound to their filament has been difficult. Now, two new myosin crystal structures have been reported that show features expected for myosin motors bound in rigor to actin. The two new structures show changes at both the actin-binding surface and the active site that have not been observed previously.  相似文献   

3.
The pathways by which activation of the small GTP-binding protein Rac causes cytoskeletal changes are not fully understood but are likely to involve both assembly of new actin filaments and reorganization of actin filaments driven by the actin-dependent ATPase activity of myosin II. Here we show that expression of active RacQ61 in growing HeLa cells, in addition to inducing ruffling, substantially enhances the level of phosphorylation of serine-19 of the myosin II regulatory light chain (MLC), which would increase actomyosin II ATPase and motor activities. Phosphorylated myosin was localized to RacQ61-induced ruffles and stress fibers. RacQ61-induced phosphorylation of MLC was reduced by a maximum of about 38% by an inhibitor (Tat-PAK) of p21-activated kinase (PAK), about 35% by an inhibitor (Y-27632) of Rho kinase, 51% by Tat-PAK plus Y-27632, and 10% by an inhibitor (ML7) of myosin light chain kinase. Staurosporine, a non-specific inhibitor of serine/threonine kinases, reduced RacQ61-induced phosphorylation of MLC by about 58%, at the maximum concentration that did not kill cells. Since Rac activates PAK and PAK can phosphorylate MLC, these data strongly suggest that PAK is responsible for a significant fraction of RacQ61-induced MLC phosphorylation. To our knowledge, this is the first evidence that active Rac causes phosphorylation of MLC in cells, thus implicating activation of the ATPase activity of actomyosin II as one of the ways by which Rac may induce cytoskeletal changes.  相似文献   

4.
Cells use complex biochemical pathways to drive shape changes for polarization and movement. One of these pathways is the self-assembly of actin filaments and myosin motors that together produce the forces and tensions that drive cell shape changes. Whereas the role of actin and myosin motors in cell polarization is clear, the exact mechanism of how the cortex, a thin shell of actin that is underneath the plasma membrane, can drive cell shape changes is still an open question. Here, we address this issue using biomimetic systems: the actin cortex is reconstituted on liposome membranes, in an ‘outside geometry’. The actin shell is either grown from an activator of actin polymerization immobilized at the membrane by a biotin–streptavidin link, or built by simple adsorption of biotinylated actin filaments to the membrane, in the presence or absence of myosin motors. We show that tension in the actin network can be induced either by active actin polymerization on the membrane via the Arp2/3 complex or by myosin II filament pulling activity. Symmetry breaking and spontaneous polarization occur above a critical tension that opens up a crack in the actin shell. We show that this critical tension is reached by growing branched networks, nucleated by the Arp2/3 complex, in a concentration window of capping protein that limits actin filament growth and by a sufficient number of motors that pull on actin filaments. Our study provides the groundwork to understanding the physical mechanisms at work during polarization prior to cell shape modifications.  相似文献   

5.
The ability to control the assembly and disassembly dynamics of actin filaments is an essential property of the cellular cytoskeleton. While many different proteins are known which accelerate the polymerization of monomers into filaments or promote their disintegration, much less is known on mechanisms which guarantee the kinetic stability of the cytoskeletal filaments. Previous studies indicate that cross-linking molecules might fulfill these stabilizing tasks, which in addition facilitates their ability to regulate the organization of cytoskeletal structures in vivo. The effect of depolymerization factors on such structures or the mechanism which leads finally to their disintegration remain unknown. Here, we use multiple depolymerization methods in order to directly demonstrate that cross-linking and bundling proteins effectively suppress the actin depolymerization in a concentration dependent manner. Even the actin depolymerizing factor cofilin is not sufficient to facilitate a fast disintegration of highly cross-linked actin networks unless molecular motors are used simultaneously. The drastic modification of actin kinetics by cross-linking molecules can be expected to have wide-ranging implications for our understanding of the cytoskeleton, where cross-linking molecules are omnipresent and essential.  相似文献   

6.
Cortical actin networks are highly dynamic and play critical roles in shaping the mechanical properties of cells. The actin cytoskeleton undergoes significant reorganization in many different contexts, including during directed cell migration and over the course of the cell cycle, when cortical actin can transition between different configurations such as open patched meshworks, homogeneous distributions, and aligned bundles. Several types of myosin motor proteins, characterized by different kinetic parameters, have been involved in this reorganization of actin filaments. Given the limitations in studying the interactions of actin with myosin in vivo, we propose stochastic agent-based models and develop a set of data analysis measures to assess how myosin motor proteins mediate various actin organizations. In particular, we identify individual motor parameters, such as motor binding rate and step size, that generate actin networks with different levels of contractility and different patterns of myosin motor localization, which have previously been observed experimentally. In simulations where two motor populations with distinct kinetic parameters interact with the same actin network, we find that motors may act in a complementary way, by tuning the actin network organization, or in an antagonistic way, where one motor emerges as dominant. This modeling and data analysis framework also uncovers parameter regimes where spatial segregation between motor populations is achieved. By allowing for changes in kinetic rates during the actin-myosin dynamic simulations, our work suggests that certain actin-myosin organizations may require additional regulation beyond mediation by motor proteins in order to reconfigure the cytoskeleton network on experimentally-observed timescales.  相似文献   

7.
Nerve growth factor (NGF) promotes growth, differentiation, and survival of sensory neurons in the mammalian nervous system. Little is known about how NGF elicits faster axon outgrowth or how growth cones integrate and transform signal input to motor output. Using cultured mouse dorsal root ganglion neurons, we found that myosin II (MII) is required for NGF to stimulate faster axon outgrowth. From experiments inducing loss or gain of function of MII, specific MII isoforms, and vinculin-dependent adhesion-cytoskeletal coupling, we determined that NGF causes decreased vinculin-dependent actomyosin restraint of microtubule advance. Inhibition of MII blocked NGF stimulation, indicating the central role of restraint in directed outgrowth. The restraint consists of myosin IIB- and IIA-dependent processes: retrograde actin network flow and transverse actin bundling, respectively. The processes differentially contribute on laminin-1 and fibronectin due to selective actin tethering to adhesions. On laminin-1, NGF induced greater vinculin-dependent adhesion–cytoskeletal coupling, which slowed retrograde actin network flow (i.e., it regulated the molecular clutch). On fibronectin, NGF caused inactivation of myosin IIA, which negatively regulated actin bundling. On both substrates, the result was the same: NGF-induced weakening of MII-dependent restraint led to dynamic microtubules entering the actin-rich periphery more frequently, giving rise to faster elongation.  相似文献   

8.
Cells actively produce contractile forces for a variety of processes including cytokinesis and motility. Contractility is known to rely on myosin II motors which convert chemical energy from ATP hydrolysis into forces on actin filaments. However, the basic physical principles of cell contractility remain poorly understood. We reconstitute contractility in a simplified model system of purified F-actin, muscle myosin II motors, and α-actinin cross-linkers. We show that contractility occurs above a threshold motor concentration and within a window of cross-linker concentrations. We also quantify the pore size of the bundled networks and find contractility to occur at a critical distance between the bundles. We propose a simple mechanism of contraction based on myosin filaments pulling neighboring bundles together into an aggregated structure. Observations of this reconstituted system in both bulk and low-dimensional geometries show that the contracting gels pull on and deform their surface with a contractile force of ∼1 μN, or ∼100 pN per F-actin bundle. Cytoplasmic extracts contracting in identical environments show a similar behavior and dependence on myosin as the reconstituted system. Our results suggest that cellular contractility can be sensitively regulated by tuning the (local) activity of molecular motors and the cross-linker density and binding affinity.  相似文献   

9.
Myosin II motors drive changes in focal adhesion morphology and composition in a “maturation process” that is crucial for regulating adhesion dynamics and signaling guiding cell adhesion, migration and fate. The underlying mechanisms of maturation, however, have been obscured by the intermingled effects of myosin II on lamellar actin architecture, dynamics and force transmission. Here, we show that focal adhesion growth rate stays constant even when cellular tension is reduced by 75%. Focal adhesion growth halts only when myosin stresses are sufficiently low to impair actin retrograde flow. Focal adhesion lifetime is reduced at low levels of cellular tension, but adhesion stability can be rescued at low levels of force by over-expression of α-actinin or constitutively active Dia1. Our work identifies a minimal myosin activity threshold that is necessary to drive lamellar actin retrograde flow is sufficient to permit focal adhesion elongation. Above this nominal threshold, myosin-mediated actin organization and dynamics regulate focal adhesion growth and stability in a force-insensitive fashion.  相似文献   

10.
Many cellular components are transported using a combination of the actin- and microtubule-based transport systems. However, how these two systems work together to allow well-regulated transport is not clearly understood. We investigate this question in the Xenopus melanophore model system, where three motors, kinesin II, cytoplasmic dynein, and myosin V, drive aggregation or dispersion of pigment organelles called melanosomes. During dispersion, myosin V functions as a "molecular ratchet" to increase outward transport by selectively terminating dynein-driven minus end runs. We show that there is a continual tug-of-war between the actin and microtubule transport systems, but the microtubule motors kinesin II and dynein are likely coordinated. Finally, we find that the transition from dispersion to aggregation increases dynein-mediated motion, decreases myosin V--mediated motion, and does not change kinesin II--dependent motion. Down-regulation of myosin V contributes to aggregation by impairing its ability to effectively compete with movement along microtubules.  相似文献   

11.
Myosin VI is a member of a superfamily of actin-based motors with at least 18 different sub-types or classes. Myosins are best known as proteins that use ATP-hydrolysis-mediated conformational changes to move along actin filaments. Because of this property, some myosins, including myosins I, V, and VI, are thought to be transporters of vesicle or protein cargoes. Myosin VI has been implicated in many seemingly different processes through functional studies in flies, worms and mammals. In several cases, its role is not easily explained by transport along actin. In addition, some of the biochemical and biophysical properties of myosin VI suggest other mechanisms of action. In this review, we summarize recent data that suggest diverse functions for myosin VI and offer an explanation for how myosin VI may function similarly in all of them. We hypothesize that the main function of myosin VI is to bind tightly to actin, stabilizing actin cytoskeletal structures and linking actin structures to membranes and protein complexes.  相似文献   

12.
Actin cables are linear cytoskeletal structures that serve as tracks for myosin-based intracellular transport of vesicles and organelles in both yeast and mammalian cells. In a yeast cell undergoing budding, cables are in constant dynamic turnover yet some cables grow from the bud neck toward the back of the mother cell until their length roughly equals the diameter of the mother cell. This raises the question: how is the length of these cables controlled? Here we describe a novel molecular mechanism for cable length control inspired by recent experimental observations in cells. This “antenna mechanism” involves three key proteins: formins, which polymerize actin, Smy1 proteins, which bind formins and inhibit actin polymerization, and myosin motors, which deliver Smy1 to formins, leading to a length-dependent actin polymerization rate. We compute the probability distribution of cable lengths as a function of several experimentally tuneable parameters such as the formin-binding affinity of Smy1 and the concentration of myosin motors delivering Smy1. These results provide testable predictions of the antenna mechanism of actin-cable length control.  相似文献   

13.
Manual evaluation of cellular structures is a popular approach in cell biological studies. However, such approaches are laborious and are prone to error, especially when large quantities of image data need to be analyzed. Here, we introduce an image analysis framework that overcomes these limitations by semi-automatic quantification and clustering of cytoskeletal structures. In our framework, cytoskeletal orientation, bundling and density are quantified by measurement of newly-developed, robust metric parameters from microscopic images. Thereafter, the microscopic images are classified without supervision by clustering based on the metric patterns. Clustering allows us to collectively investigate the large number of cytoskeletal structure images without laborious inspection. Application of this framework to images of GFP-actin binding domain 2 (GFP-ABD2)-labeled actin cytoskeletons in Arabidopsis guard cells determined that microfilaments (MFs) are radially oriented and transiently bundled in the process of diurnal stomatal opening. The framework also revealed that the expression of mouse talin GFP-ABD (GFP-mTn) continuously induced MF bundling and suppressed the diurnal patterns of stomatal opening, suggesting that changes in the level of MF bundling are crucial for promoting stomatal opening. These results clearly demonstrate the utility of our image analysis framework.  相似文献   

14.
The organization of myosin in the fibroblast lamellum was studied by correlative fluorescence and electron microscopy after a novel procedure to reveal its underlying morphology. An X-rhodamine analog of conventional smooth muscle myosin (myosin II) that colocalized after microinjection with endogenous myosin was used to trace myosin distribution in living fibroblasts. Then, the same cells were examined by EM of platinum replicas. To visualize the structural arrangement of myosin, other cytoskeletal fibrillar structures had to be removed: microtubules were depolymerized by nocodazole treatment of the living cells before injection of myosin; continued nocodazole treatment also induced the intermediate filaments to concentrate near the nucleus, thus removing them from the lamellar region; actin filaments were removed after lysis of the cells by incubation of the cytoskeletons with recombinant gelsolin. Possible changes in myosin organization caused by this treatment were examined by fluorescence microscopy. No significant differences in myosin distribution patterns between nocodazole-treated and control cells were observed. Cell lysis and depletion of actin also did not induce reorganization of myosin as was shown by direct comparison of myosin distribution in the same cells in the living state and after gelsolin treatment. EM of the well-spread, peripheral regions of actin-depleted cytoskeletons revealed a network of bipolar myosin mini-filaments, contracting each other at their terminal, globular regions. The morphology of this network corresponded well to the myosin distribution observed by fluorescence microscopy. A novel mechanism of cell contraction by folding of the myosin filament network is proposed.  相似文献   

15.
Cells generate mechanical forces primarily from interactions between F-actin, cross-linking proteins, myosin motors, and other actin-binding proteins in the cytoskeleton. To understand how molecular interactions between the cytoskeletal elements generate forces, a number of in vitro experiments have been performed but are limited in their ability to accurately reproduce the diversity of motor mobility. In myosin motility assays, myosin heads are fixed on a surface and glide F-actin. By contrast, in reconstituted gels, the motion of both myosin and F-actin is unrestricted. Because only these two extreme conditions have been used, the importance of mobility of motors for network behaviors has remained unclear. In this study, to illuminate the impacts of motor mobility on the contractile behaviors of the actin cytoskeleton, we employed an agent-based computational model based on Brownian dynamics. We find that if motors can bind to only one F-actin like myosin I, networks are most contractile at intermediate mobility. In this case, less motor mobility helps motors stably pull F-actins to generate tensile forces, whereas higher motor mobility allows F-actins to aggregate into larger clustering structures. The optimal intermediate motor mobility depends on the stall force and affinity of motors that are regulated by mechanochemical rates. In addition, we find that the role of motor mobility can vary drastically if motors can bind to a pair of F-actins. A network can exhibit large contraction with high motor mobility because motors bound to antiparallel pairs of F-actins can exert similar forces regardless of their mobility. Results from this study imply that the mobility of molecular motors may critically regulate contractile behaviors of actin networks in cells.  相似文献   

16.
Detergent-resistant membranes contain signaling and integral membrane proteins that organize cholesterol-rich domains called lipid rafts. A subset of these detergent-resistant membranes (DRM-H) exhibits a higher buoyant density ( approximately 1.16 g/ml) because of association with membrane skeleton proteins, including actin, myosin II, myosin 1G, fodrin, and an actin- and membrane-binding protein called supervillin (Nebl, T., Pestonjamasp, K. N., Leszyk, J. D., Crowley, J. L., Oh, S. W., and Luna, E. J. (2002) J. Biol. Chem. 277, 43399-43409). To characterize interactions among DRM-H cytoskeletal proteins, we investigated the binding partners of the novel supervillin N terminus, specifically amino acids 1-830. We find that the supervillin N terminus binds directly to myosin II, as well as to F-actin. Three F-actin-binding sites were mapped to sequences within amino acids approximately 280-342, approximately 344-422, and approximately 700-830. Sequences with combinations of these sites promote F-actin cross-linking and/or bundling. Supervillin amino acids 1-174 specifically interact with the S2 domain in chicken gizzard myosin and nonmuscle myosin IIA (MYH-9) but exhibit little binding to skeletal muscle myosin II. Direct or indirect binding to filamin also was observed. Overexpression of supervillin amino acids 1-174 in COS7 cells disrupted the localization of myosin IIB without obviously affecting actin filaments. Taken together, these results suggest that supervillin may mediate actin and myosin II filament organization at cholesterol-rich membrane domains.  相似文献   

17.
Helicobacter pylori induces signaling cascades leading to changes in cytoskeleton and an inflammatory response. Information on the morphological changes and cytoskeletal rearrangements induced by attachment of the bacterium is contradictory and signal transduction pathways are not well known. Since rho family of small GTPases is known to mediate cytoskeletal response to various extracellular stimuli, and is also involved in several other important signal transduction pathways, we have investigated the role of rac and cdc42 in H. pylori-induced cytoskeletal changes in cultured carcinoma AGS cells. AGS cells grown with serum expressed actin filaments in the form of short stress fibers and thin network at the edges, which were depolymerized by removal of serum. In serum-starved cells both type I and type II strains of H. pylori induced formation of actin filaments and lamellipodia-like structures. Microinjection of active rac induced similar changes, but injection of inactive rac prevented the effects of H. pylori, while active or inactive cdc42 did not have any significant effect. Cytoskeletal effects of H. pylori were inhibited by actinomycin D, but not completely by cycloheximide. These results indicate that rac activation is involved in signal transduction cascade leading to cytoskeletal reorganization induced by H. pylori and that gene activation and synthesis of new proteins is necessary in this process.  相似文献   

18.
Interplay of two cytoskeletal systems--microfilaments and microtubules is essential for directional cell movement. To better understand the role of those cytoskeletal systems in polarization of cells, rat fibroblasts were incubated with drugs inhibiting activity of myosin II: blebbistatin and Y-27632. Both drugs led to disappearance of actin-myosin bundles and mature focal cell-matrix adhesions but did not affect polarization and directional motility. The rate of motility even increased after inhibitor treatment. The characteristic feature of inhibitor-treated fibroblasts was collapse of the cytoplasm accompanied by bundling of microtubules that led to transformation of lamellae into long immobile tails. The only exception was the leading anterior lamella which was not transformed into the tail and supported directional movement of the cell. The tail at the cell rear determined the position of anterior lamella and direction of locomotion. Depolymerization of microtubules by colcemid stopped directional locomotion of inhibitor-treated cells. These data show that integrity of the microtubular system provides the basic mechanism of polarization and orientation which is only modified by interactions with actin-myosin system and cell-substrate adhesions. We suggest that the position of bundled tail microtubules and dispersed microtubules in leading lamella determine polarization in cells lacking stress fibers and focal adhesions. Thus, polarization is based on microtubule-dependent mechanisms both in non-contractile and contractile cells. These mechanisms could switch dependent on circumstances as fibroblasts may acquire non-contractile phenotype, not only after direct inhibition of myosin II but also in certain conditions of microenvironment.  相似文献   

19.
It is clear that the uptake of large particles is driven by a finely controlled rearrangement of the actin cytoskeleton. Here, we present evidence that myosin motors and microtubules also participate in the Fcgamma-mediated internalization process in macrophages. During phagocytosis, a substantial amount of plasma membrane is internalized without a net reduction in cell surface area, implying an active mechanism for membrane recycling. Despite the importance of this recycling pathway in phagosome maturation and in the retrieval of immunogenic peptides from phagosomes, the cytoskeletal requirements are largely unknown. To study this vesicle-mediated recycling transport, we used a biochemical assay and we developed a method to follow this process by confocal fluorescence microscopy. Interestingly, recycling from the phagosomal compartment was increased when the actin cortex was thinned by inhibitors of F-actin. In contrast, depolymerization of microtubules diminished both phagocytosis and recycling from phagosomes. Our results suggest that actin and microtubules are needed not only for phagosome biogenesis but also at other steps along the phagocytic pathway.  相似文献   

20.
Filamentous actin is one of the most important cytoskeletal elements. Not only is it responsible for the elastic properties of many cell types, but it also plays a vital role in cellular adhesion and motility. Understanding the bundling kinetics of actin filaments is important in the formation of various cytoskeletal structures, such as filopodia and stress fibers. Utilizing a unique pillar-structured microfluidic device, we investigated the time dependence of bundling kinetics of pillar supported free-standing actin filaments. Microparticles attached to the filaments allowed the measurement of thermal motion, and we found that bundling takes place at lower concentrations than previously found in 3-dimensional actin gels, i.e. actin filaments formed bundles in the presence of 5–12 mM of magnesium chloride in a time-dependent manner. The filaments also displayed long term stability for up to hours after removing the magnesium ions from the buffer, which suggests that there is an extensive hysteresis between cation induced crosslinking and decrosslinking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号