首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regeneration of adult rat and mouse slow (soleus) and fast (sternomastoid) muscles was examined after the degeneration of myofibers had been achieved by a snake venom cardiotoxin, under experimental conditions devised to spare as far as possible the satellite cells, the nerves, and the blood vessels of the muscles. Three days after the injury, no myosin was detectable in selected portions of the muscles. New myosins of embryonic, neonatal, and adult types started to be synthesized during the following two days. Adult myosins thus appeared more precociously than in development, which implies that the synthesis of myosin isoforms during regeneration does not entirely 'recapitulate' the sequence of myosin transitions observed during normal development. Two weeks after the injury, the isomyosin electrophoretic pattern displayed by regenerated muscles was already the same as that of control muscles; the normal adult pattern was therefore expressed more rapidly in regenerating than in developing muscles. Except for the synthesis of the slow isoform which was generally inhibited in denervated muscles, the same types of myosins were expressed during the early stages of regeneration in denervated as in innervated muscles; long-term denervation prevented however the qualitative and quantitative recovery of the normal myosin pattern.  相似文献   

2.
Myosin isozymes and their fiber distribution were studied during regeneration of the soleus muscle of young adult (4-6 week old) rats. Muscle degeneration and regeneration were induced by a single subcutaneous injection of a snake toxin, notexin. If reinnervation of the regenerating muscle was allowed to occur (functional innervation nearly complete by 7 days), then fiber diameters continued to increase and by 28 days after toxin treatment they attained the same values as fibers in the contralateral soleus. If the muscles were denervated at the time of toxin injection, the early phases of regeneration still took place but the fibers failed to continue to increase in size. Electrophoresis of native myosin showed multiple bands between 3 and 21 days of regeneration which could be interpreted as indicating the presence of embryonic, neonatal, fast and slow myosins in the innervated muscles. Adult slow myosin became the exclusive from in innervated regenerates. In contrast, adult fast myosin became the predominant form in denervated regenerating muscles. Immunocytochemical localization of myosin isozymes demonstrated that in innervated muscles the slow form began to appear in a heterogeneous fashion at about 7 days, and became the major form in all fibers by 21-28 days. Thus, the regenerated muscle was almost entirely composed of slow fibers, in clear contrast to the contralateral muscle which was still substantially mixed. In denervated regenerating muscles, slow myosin was not detected biochemically or immunocytochemically whereas fast myosin was detected in all denervated fibers by 21-28 days. The regenerating soleus muscle therefore is clearly different from the developing soleus muscle in that the former is composed of a uniform fiber population with respect to myosin transitions. Moreover the satellite cells which account for the regeneration process in the soleus muscle do not appear to be predetermined with respect to myosin heavy chain expression, since the fibers they form can express either slow or fast isoforms. The induction of the slow myosin phenotype is entirely dependent on a positive, extrinsic influence of the nerve.  相似文献   

3.
Regenerating areas of adult chicken fast muscle (pectoralis major) and slow muscle (anterior latissimus dorsi) were examined in order to determine synthesis patterns of myosin light chains, heavy chains and tropomyosin. In addition, these patterns were also examined in muscle cultures derived from satellite cells of adult fast and slow muscle. One week after cold-injury the regenerating fast muscle showed a pattern of synthesis that was predominately embryonic. These muscles synthesized the embryonic myosin heavy chain, beta-tropomyosin and reduced amounts of myosin fast light chain-3 which are characteristic of embryonic fast muscle but synthesized very little myosin slow light chains. The regenerating slow muscle, however, showed a nearly complete array of embryonic peptides including embryonic myosin heavy chain, fast and slow myosin light chains and both alpha-fast and slow tropomyosins. Peptide map analysis of the embryonic myosin heavy chains synthesized by regenerating fast and slow muscles showed them to be identical. Thus, in both muscles there is a return to embryonic patterns during regeneration but this return appears to be incomplete in the pectoralis major. By 4 weeks postinjury both regenerating fast and slow muscles had stopped synthesizing embryonic isoforms of myosin and tropomyosin and had returned to a normal adult pattern of synthesis. Adult fast and slow muscles yielded a satellite cell population that formed muscle fibers in culture. Fibers derived from either population synthesized the embryonic myosin heavy chain in addition to alpha-fast and beta-tropomyosin. Thus, muscle fibers derived in culture from satellite cells of fast and slow muscles synthesized a predominately embryonic pattern of myosin heavy chains and tropomyosin. In addition, however, the satellite cell-derived myotubes from fast muscle synthesized only fast myosin light chains while the myotubes derived from slow muscle satellite cells synthesized both fast and slow myosin light chains. Thus, while both kinds of satellite cells produced embryonic type myotubes in culture the overall patterns were not identical. Satellite cells of fast and slow muscle appear therefore to have diverged from each other in their commitment during maturation in vivo.  相似文献   

4.
Summary Chronically stimulated fast-twitch muscles of the rabbit were histochemically and immunohistochemically analyzed in serial cross sections (1) for percentages of fiber types, and (2) for the presence of myosin heavy chain isoforms during fast-to-slow transformation. By four weeks of stimulation the number of type-I fibers had increased more than fourfold, while only about 6% of the original IIB fibers remained. Type-IC and -IIC fibers transiently rose to 20% of the total fiber population. After 16 weeks, the number of type-I fibers had increased to 42%. With prolonged stimulation fewer fibers reacted with antibodies against embryonic and neonatal myosins and more with the antibody against slow myosin. The reaction for embryonic myosin was most often detected in the C fibers (IC, IIC). Immunohistochemical subtypes were observed for each fiber type in the stimulated muscles. The greatest number was seen in type-IIC fibers, which, in addition to their reaction for fast/neonatal and slow myosins, might also react with the antibodies against neonatal/embryonic and embryonic myosins. These findings indicated that the transforming fibers temporarily expressed myosin heavy chain isoforms normally not detectable in adult skeletal muscle. Myotubes reacted strongly with the antibodies against fast/neonatal and embryonic myosins, and some of them also with the antibody against slow myosin. Thus, it appears that under the influence of the low frequency stimulus pattern some of the newly formed myotubes developed into type-I fibers.  相似文献   

5.
Development of muscle fiber specialization in the rat hindlimb   总被引:11,自引:7,他引:4       下载免费PDF全文
The appearance of fast and slow fiber types in the distal hindlimb of the rat was investigated using affinity-purified antibodies specific to adult fast and slow myosins, two-dimensional electrophoresis of myosin light chains, and electron microscope examination of developing muscle cells. As others have noted, muscle histogenesis is not synchronous; rather, a series of muscle fiber generations occurs, each generation forming along the walls of the previous generation. At the onset of myotube formation on the 15th d of gestation, the antimyosin antibodies do not distinguish among fibers. All fibers react strongly with antibody to fast myosin but not with antibody to slow myosin. The initiation of fiber type differentiation can be detected in the 17-d fetus by a gradual increase in the binding of antibody to slow myosin in the primary, but not the secondary, generation myotubes. Moreover, neuromuscular contacts at this crucial time are infrequent, primitive, and restricted predominantly, but not exclusively, to the primary generation cells, the same cells which begin to bind large amounts of antislow myosin at this time. With maturation, the primary generation cells decrease their binding of antifast myosin and become type I fibers. Secondary generation cells are initially all primitive type II fibers. In future fast muscles the secondary generation cells remain type II, while in future slow muscles most of the secondary generation cells eventually change to type I over a prolonged postnatal period. We conclude that the temporal sequence of muscle development is fundamentally important in determining the genetic expression of individual muscle cells.  相似文献   

6.
A library of monoclonal antibodies specific for myosin heavy chain (HC) was used to study myosin expression in regenerating fibers. The response to cold injury of slow skeletal ALD muscle previously induced to eliminate SM1 myosin by weight overload was compared to that of its contralateral control. Native gel electrophoresis combined with immunoblotting demonstrated that slow SM1 myosin HC eliminated from hypertrophic muscle reappeared both at the site of active regeneration and unexpectedly, also distal to the site of injury. The regeneration response of hypertrophied muscles was similar to that of the controls. In addition to SM1 myosin HC, ventricular-like and embryonic/fast isoforms were also expressed in both muscles during the early stages of regeneration and disappeared as the muscle fibers matured. These observations demonstrate that regenerating slow muscle fibers reexpress myosins' characteristic of developing muscle irrespective of the myosin phenotype prior to injury. The reappearance of repressed myosin HC in the hypertrophied ALD muscle is consistent with the presence of newly differentiated myonuclei.  相似文献   

7.
Myosin types in human skeletal muscle fibers   总被引:2,自引:0,他引:2  
By combining enzyme histochemistry for fiber typing with immunohistochemistry for slow and fast myosin a correlation between fiber type and myosin type was sought in human skeletal muscle. Fiber typing was done by staining for myofibrillar ATPases after preincubation at discriminating pH values. Myosin types were discriminated using type specific anti-rabbit myosin antibodies shown to cross-react with human myosin and were visualized by a protein A-peroxidase method. Type I fibers were shown to contain slow myosin only, type IIA and IIB fibers fast myosin only, and type IIC fibers both myosins in various proportions. When muscle biopsies from well-trained athletes were investigated essentially the same staining pattern was observed. However, rarely occurring type I fibers with high glycolytic activity were detected containing additional small amounts of fast myosin and occasional type IIA fibers had small amounts of slow myosin. Based on the observation of various fiber types in which slow and fast myosin coexist we propose a dynamic continuum of fibers encompassing all fiber types.  相似文献   

8.
Summary By combining enzyme histochemistry for fiber typing with immunohistochemistry for slow and fast myosin a correlation between fiber type and myosin type was sought in human skeletal muscle. Fiber typing was done by staining for myofibrillar ATPases after preincubation at discriminating pH values. Myosin types were discriminated using type specific anti-rabbit myosin antibodies shown to cross-react with human myosin and were visualized by a protein A-peroxidase method. Type I fibers were shown to contain slow myosin only, type IIA and IIB fibers fast myosin only, and type IIC fibers both myosins in various proportions. When muscle biopsies from well-trained athletes were investigated essentially the same staining pattern was observed. However, rarely occurring type I fibers with high glycolytic activity were detected containing additional small amounts of fast myosin and occasional type IIA fibers had small amounts of slow myosin. Based on the observation of various fiber types in which slow and fast myosin coexist we propose a dynamic continuum of fibers encompassing all fiber types.  相似文献   

9.
By using immunoaffinity column chromatography slow (I) and fast (IIA, IIB) myosins were isolated from human (vastus lateralis) and rabbit (tibialis anterior, psoas and conoidal bundle) skeletal muscles. The peptide pattern revealed that slow (I) and fast (IIA, IIB) myosin heavy chains are quite distinct, as are those from pure slow (conoidal bundle) and fast (psoas) rabbit skeletal muscles. Unlike Billeter et al. (1981) the authors observed that fast human myosins were always associated with a small amount of slow myosin light chains. The fast myosins (IIA, IIB) from rabbit tibialis anterior muscle did not appear very distinct and contained only fast myosin light chains. These myosins were different from the IIB myosin from the psoas muscle. Ten per cent of the fibres revealed histochemically as fast IIA also reacted with an anti-slow myosin antibody. The classical histochemical techniques appear inadequate to demonstrate the existing differences among fibre types, but the monoclonal antibodies hold promise.  相似文献   

10.
We used a model of crush-induced regeneration in rat in order to characterize biochemically and histologically the implication of protein kinase C (PKC) in muscle repair after damage. In this model, slow soleus and fast extensor digitorum longus (EDL) muscle regeneration proceed differently. PKC activity has been assayed in regenerating muscles and their intact contralateral during the first 14 days following crushing. Degeneration (myolysis) occurring shortly after crush was associated with a marked down-regulation of the enzyme in both wound muscles and notable increase in the corresponding contralateral muscles. Muscle fiber reconstruction in EDL was associated with a rise in PKC activity which peaked at day 7 in regenerating muscle where it was twice higher than in intact muscle. At variance, muscle PKC activity in soleus increased slower than that of EDL and reached later intact level. Western blot analysis and immunohistochemical studies of representative members of the three PKC subfamilies were performed. All the isoform tested were much less expressed in regenerating than in control intact muscles suggesting that the overall PKC activity in regenerating muscles was more activable than in controls. We have shown that PKC isoforms were sequentially expressed during regeneration in both muscle types. PKC theta; being present the earliest, then delta, epsilon and alpha and finally zeta, beta and eta. Some isoforms were differentially expressed according muscle type. PKC delta being more expressed in soleus whereas beta and eta appeared earlier in EDL. Histochemical studies have revealed that the isoforms were differently localized in muscle tissue and that fiber regeneration was associated with PKC alpha translocation from sarcoplasma to sarcolemma. Together these data have shown that multiple PKC isoforms are implicated in the regenerative process acting at different in times and location and suggesting that individual isoform may fulfill distinct functions.  相似文献   

11.
Electrophoretic analysis in non-dissociating conditions reveals three types of myosin in adult urodelan amphibian skeletal muscles: 3 isoforms of fast myosin (FM), one isoform of intermediate myosin (IM) and one or two isoforms of slow myosin (SM). Each type is characterized by a specific heavy chain HCf (FM), HCi (IM) and HCs (SM), respectively. In all urodelan species, as in mammals, fast isomyosins associate HCf and the three fast light chains LC1f, LC2f, and LC3f. In most urodelan species the intermediate myosin contains LC1f and LC2f and can be considered as an homodimer of the alkali LC1f. However, in Euproctus asper, IM is characterized by the association of both slow and fast LC with HCi. Slow myosin is a hybrid molecule associating HCs with slow and fast LC. During metamorphosis, a myosin isoenzymic transition occurs consisting in the replacement of three larval myosins (LM) characterized by a specific heavy chain (HCI), by the adult isomyosins with lower electrophoretic mobilities. At the same time there is a change in the ATPase myofibrillar pattern, with the larval fiber types being replaced by adult fibers of types I, IIA and IIB. In the neotenic and perennibranchiate species, which do not undergo spontaneous metamorphosis, sexually mature larval animals present a change in the myosin isoenzymic profile, but no complete transition. The coexistence of larval and adult isomyosins and the persistence of transitional fibers of type IIC in the skeletal muscle are demonstrated. Experimental hypo- and hyperthyroidism indicate that thyroid hormone stimulates the regression of the larval isomyosins, possibly through indirect pathways. In contrast, the appearance and the persistence of the adult isomyosins seem to be independent of thyroid hormone. Thus, the control of the isoenzymic transition in the skeletal muscle of urodelan amphibians appears to imply indirect mechanisms, operating differently on each of the two phases of the complete transition.  相似文献   

12.
Continuous stimulation of a rabbit fast muscle at 10 Hz changes its physiological and biochemical parameters to those of a slow muscle. These transformations include the replacement of myosin of one type by myosin of another type. Two hypotheses could explain the cellular basis of these changes. First, if fibers were permanently programmed to be fast or slow, but not both, a change from one muscle type to another would involve atrophy of one fiber type accompanied by de novo appearance of the other type. Alternatively, preexisting muscle fibers could be changing from the expression of one set of genes to the expression of another. Fluorescein-labeled antibodies against fast (AF) and slow (AS) muscle myosins of rabbits have been prepared by procedures originally applied to chicken muscle. In the unstimulated fast peroneus longus muscle, most fibers stained only with AF; a small percentage stained only with AS; and no fibers stained with both antibodies. In stimulated muscles, most fibers stained with both AF and AS; with increasing time of stimulation, there was a progressive decrease in staining intensity with AF and a progressive increase in staining intensity with AS within the same fibers. These results are consistent with a theory that individual preexisting muscle fibers can actually switch from the synthesis of fast myosin to the synthesis of slow myosin.  相似文献   

13.
We have studied the contractile properties, structure, fiber-type composition, and myosin heavy chain (MyHC) expression pattern of regenerating and intact soleus muscles of adult CBA/J mice treated with cyclosporin A (CsA) or vehicle solutions (Cremophor, saline). A comparison of muscles after 4-7 weeks drug application with those receiving vehicle showed that the isometric contractile force of intact drug-treated muscles was reduced (tetanus, -21%; twitch, -34%) despite normal mass and muscle cross-sectional area. The frequency of fast-twitch fibers was increased, whereas no innervation deficits, histopathological alterations, or changes in fiber numbers were observed. Regeneration after cryolesion of the contralateral soleus proceeded more slowly in CsA-treated than in vehicle-treated animals. Despite this, when muscle properties reached mature levels (4-7 weeks), muscle mass recovery was better in CsA-treated animals (30% higher weight, 50% more fiber profiles in cross-sections). The force production per unit cross-sectional area was deficient, but not the maximum tension. Twitch time-to-peak and half-relaxation time were shorter than controls correlating with a predominance of fast-twitch fibers (98% Type II fibers versus 16%-18% in control muscles) and fast MyHC isoforms. Partial reversal of this fast phenotype and an increase in muscle force were observed when the animals were left to recover without treatment for 5-8 weeks after CsA application over 7 weeks. The high numbers of fiber profiles in CsA-treated regenerated muscles and increased mass remained unchanged after withdrawal. Thus, CsA treatment has a hyperplastic effect on regenerating muscles, and drug-induced phenotype alterations are much more prominent in regenerated muscles.  相似文献   

14.
The functional recovery of skeletal muscles after peripheral nerve transection and microsurgical repair is generally incomplete. Several reinnervation abnormalities have been described even after nerve reconstruction surgery. Less is known, however, about the regenerative capacity of reinnervated muscles. Previously, we detected remarkable morphological and motor endplate alterations after inducing muscle necrosis and subsequent regeneration in the reinnervated rat soleus muscle. In the present study, we comparatively analyzed the morphometric properties of different fiber populations, as well as the expression pattern of myosin heavy chain isoforms at both immunohistochemical and mRNA levels in reinnervated versus reinnervated-regenerated muscles. A dramatic slow-to-fast fiber type transition was found in reinnervated soleus, and a further change toward the fast phenotype was observed in reinnervated-regenerated muscles. These findings suggest that the (fast) pattern of reinnervation plays a dominant role in the specification of fiber phenotype during regeneration, which can contribute to the long-lasting functional impairment of the reinnervated muscle. Moreover, because the fast II fibers (and selectively, a certain population of the fast IIB fibers) showed better recovery than did the slow type I fibers, the faster phenotype of the reinnervated-regenerated muscle seems to be actively maintained by selective yet undefined cues.  相似文献   

15.
Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca(2+) via the troponin complex. Slow- and fast-twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities, and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin, troponin T (TnT), and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton X-100-skinned single fibers from soleus, diaphragm, gastrocnemius, and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of the TnT and TnI isoforms to investigate their role in determining contractility. Types IIa, IIx, and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca(2+) sensitivity than that of the fast troponin fibers, whereas fibers containing fast troponin showed a higher cooperativity of Ca(2+) activation than that of the slow troponin fibers. These results demonstrate distinct but coordinated regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties of muscle.  相似文献   

16.
J Gagnon  T T Kurowski  R Zak 《FEBS letters》1989,250(2):549-555
We have used the overload-induced growth of avian muscles to study the assembly of the newly synthesized myosins which were separated by non-denaturing pyrophosphate-polyacrylamide gel electrophoresis. Using this model, we have observed the appearance of fast-like isomyosins in polyribosomes prepared from slow anterior latissimus dorsi muscle after 72 h of overload. These new isoforms comigrating with native myosin from fast posterior latissimus dorsi muscle were not yet present in cellular extracts from the same muscle. The in vitro translation system utilizing muscle specific polyribosomes directs the synthesis of the corresponding myosin isoforms. Under denaturing conditions, myosin heavy chains and light chains dissociate to the expected subunit composition of each specific isoform. The synthesis and assembly of native myosin on polyribosomes indicate that myosin exists as a single mature protein prior to the incorporation in the thick filament.  相似文献   

17.
The ontogeny of a primary flight muscle, the pectoralis, in the little brown bat (Myotis lucifugus: Vespertilionidae) was studied using histochemical, immunocytochemical, and electrophoretic techniques. In fetal and early neonatal (postnatal age 1–6 days) Myotis, histochemical techniques for myofibrillar ATPase (mATPase) and antibodies for slow and fast myosins demonstrated the presence of two fiber types, here called types I and IIa. These data correlated with multiple transitional myosin heavy chain isoforms and native myosin isoforms demonstrated with SDS-PAGE and 4% pyrophosphate PAGE. There was a decrease in the distribution and number of type I fibers with increasing postnatal age. At postnatal age 8–9 days, the adult phenotype was observed with regard to muscle fiber type (100% type IIa fibers) and myosin isoform profile (single adult MHC and native myosin isoforms). This “adult” fiber type profile and myosin isoform composition preceeded adult function by about 2 weeks. For example, little brown bats were incapable of sustained flight until approximately postnatal day 24, and myofiber size did not achieve adult size until approximately postnatal day 25. Although Myotis pectoralis is unique in being composed of 100% type IIa fibers, transitional fiber types and isoforms were present. These transitional forms had been observed previously in other mammals bearing mixed adult muscle fibers and which undergo transitional stages in muscle ontogeny. However, in Myotis pectoralis, this transition transpires relatively early in development. © 1994 Wiley-Liss, Inc.  相似文献   

18.
Our objective was to determine the effects of a clenbuterol (CB) treatment orally administered (2 mg per kg) to rats submitted to 14 days of hindlimb unloading (HU). The morphological and the contractile properties as well as the myosin heavy chain isoforms contained in each fiber type were determined in whole soleus muscles. As classically described after HU, a decrease in muscle wet weight and in body mass associated with a loss of muscular force, an evolution of the contractile parameters towards those of a fast muscle type, and the emergence of fast myosin heavy chain isoforms were observed. The CB treatment in the HU rats helped reduce the decrease in 1) muscle and body weights, 2) force and 3) the proportion of slow fibers, without preventing the emergence of fast myosin isoforms. Clenbuterol induced a complex remodelling of the muscle typing promoting the combination of both slow and fast myosin isoforms within one fiber. To conclude, our data demonstrate that CB administration partially counteracts the effects produced by HU, and they allow us to anticipate advances in the treatment of muscular atrophy.  相似文献   

19.
Summary— In contrast to general belief, the response of rabbit muscles to denervation is maturation to slow-like type muscles [7]. We report now an investigation by biochemical, morphological, and mechanical studies of the time course effects of muscle denervation on the slow-type soleus and fast-type gastrocnemius to help clucidate the mechanism of maturation of rabbit denervated muscles to slow-like muscles. In both muscles, denervation induced selective progressive atrophy of most fast fibers and hypertrophy of many slow fibers which displayed wide Z-lines; this was accompanied by the appearance of hybrid LC1F- and LC1E-associated slow myosins. The percentage of slow myosins increased with age similarly in the contralateral and denervated soleus. On the other hand, the percentage of slow myosins remained low in the contralateral gastrocnemius, whereas it increased to 95% in the denervated gastrocnemius; in the denervated gastrocnemius, the percentage of slow myosins reached 50% at about 35 days postnatal. At this age, the maximal shortening velocity of the denervated gastrocnemius and its twitch contraction time were already those of a slow-type muscle. This suggests that in addition to myosin, other proteins contributed to the mechanical properties of the denervated gastrocnemius. Transformation of rabbit denervated muscles to slow-like type muscles, which are associated with a lower energy requirement and higher muscle endurance than fast-type muscles, may constitute an adequate model for human neuromuscular pathology.  相似文献   

20.
The composition of adult rat soleus muscle spindles, with respect to myosin heavy chain isoforms and M-band proteins, was studied by light-microscope immunohistochemistry. Serial sections were labelled with antibodies against slow tonic, slow twitch, fast twitch and neonatal myosin isoforms as well as against myomesin, M-protein and the MM form of creatine kinase. Intrafusal fiber types were distinguished according to the pattern of ATPase activity following acid and alkaline preincubations. Nuclear bag1 fibers were always strongly stained throughout with anti-slow tonic myosin, were positive for anti-slow twitch myosin towards and in the C-region but were unstained with anti-fast twitch and anti-neonatal myosins. The staining of nuclear bag2 fibers was in general highly variable. However, they were most often strongly stained by anti-slow tonic myosin in the A-region and gradually lost this reactivity towards the poles, whereas a positive reaction with anti-slow twitch myosins was found along the whole fiber. Regional staining variability with anti-neonatal and anti-fast myosins was apparent, often with decreasing intensity towards the polar regions. Nuclear chain fibers showed strong transient reactivity with anti-slow tonic myosin in the equatorial region, did not react with anti-slow twitch and were always evenly stained by anti-fast twitch and anti-neonatal myosins. All three intrafusal fiber types were stained with anti-myomesin. Nuclear bag1 fibers lacked staining for M-protein, whereas bag2 fibers displayed intermediate staining, with regional variability, often increasing in reactivity towards the polar regions. Chain fibers were always strongly stained by anti-M-protein. The MM form of creatine kinase was present in all three fiber types, but bag1 fibers were less reactive and clear striations were not observed, in contrast to bag2 and chain fibers. Out of 38 cross sectioned spindles two were found to have an atypical fiber composition (lack of chain fibers) and a rather diverse staining pattern for the different antibodies tested. Taken together, the data show that in adult rat soleus, slow tonic and neonatal myosin heavy chain isoforms are only expressed in the muscle spindle fibers and that each intrafusal fiber type has a unique, although variable, composition of myosin heavy chain isoforms and M-band proteins. We propose that both motor and sensory innervation might be the determining factors regulating the variable expression of myosin heavy chain isoforms and M-band proteins in intrafusal fibers of rat muscle spindles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号