首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Two different aconitases are known to be expressed after thegermination of oil-seed plants. One is a mitochondrial aconitasethat is involved in the tricarboxylic acid cycle. The otherparticipates in the glyoxylate cycle, playing a role in gluconeogenesisfrom stored oil. We isolated and characterized a cDNA for anaconitase from etiolated pumpkin cotyledons. The cDNA was 3,145bp long and capable of encoding a protein of 98 kDa. N-terminaland C-terminal amino acid sequences deduced from the cDNA didnot contain mitochondrial or glyoxysomal targeting signals.A search of protein databases suggested that the cDNA encodeda cytosolic aconitase. Immuno blotting analysis with a specificantibody against the aconitase expressed in Escherichia colirevealed that developmental changes in the amount of the aconitasewere correlated with changes in levels of other enzymes of theglyoxylate cycle during growth of seedlings. Further analysisby subcellular fractionation and immunofluorescence microscopyrevealed that aconitase was present only in the cytosol andmitochondria. No glyoxysomal aconitase was found in etiolatedcotyledons even though all the other enzymes of the glyoxylatecycle are known to be localized in glyoxysomes. Taken together,the data suggest that the cytosolic aconitase participates inthe glyoxylate cycle with four glyoxysomal enzymes. (Received December 1, 1994; Accepted March 17, 1995)  相似文献   

4.
In the aquatic liverwort Riccia fluitans the regulation of theplasma membrane H+/amino acid symport has been investigated.Cytosolic pH (pHc), membrane potential (Em) and membrane conductancehave been measured and related to transport data, (i) The releaseof [14C]amino acids is strongly stimulated by cytosolic acidification,induced by the external addition of acetic acid, a decreasein external K+, and in the change from light to dark. On average,a decrease in pHc of 0.5 to 0.6 units corresponded with a 4-foldstimulation in amino acid efflux. (ii) External pH changes havefar less effect on substrate transport than the cytosolic pHshifts of the same order. (iii) The inwardly directed positivecurrent, induced by amino acids, is severely inhibited by cytosolicacidification. (iv) Fusicoccin (FC) stimulates amino acid uptakewithout considerable change in proton motive force. (v) Whenthe proton motive force is kept constant, the uptake of aminoacids into Riccia thalli is much lower than when the pump isdeactivated. It is suggested that both the proton pump activityand cytosolic pH are the dominant factors in the regulationof the H+/amino acid symport across the plasma membrane of Ricciafluitans, and it is concluded that the proton motive force isnot a reliable quantity to predict and interpret transport kinetics. Key words: Amino acid, cytosolic pH, pH-sensitive electrode, proton motive force, regulation, Riccia fluitans  相似文献   

5.
Kartusch R 《Protoplasma》2003,220(3-4):219-225
Summary.  Metal ions induce the synthesis of callose in Allium cepa epidermal cells. Callose is deposited as single knoblike local accumulations, aggregates of knobs, or furrowed clusters tightly attached to the cell wall. The most effective metal is copper, it induces callose formation at micromolar concentrations. Agents acting on inositolphosphate metabolism, phospholipase inhibitors, calcium channel inhibitors, modulators of cytoplasmic calcium, or receptor antagonists influence callose synthesis. It is concluded that metal ions, especially Cu2+, initiate a signal transduction chain by activation of phospholipases and generation of inositol 1,4,5-trisphosphate, and that callose synthesis is a cellular defence reaction caused by the disturbance of intracellular calcium homeostasis. Received October 10, 2001; accepted September 16, 2002; published online March 11, 2003  相似文献   

6.
A cDNA for a pathogenesis-related endo-ß-1,3-glucanaseisolated from soybean, was fused to an anther tapetum-specificpromoter (Osg6B promoter) isolated from rice and the resultingchimeric gene was introduced into tobacco. The Osg6B promoterbecame active in the anther tapetum during formation of tetradsand the tapetal glucanase activity in the transgenic plantscaused in a significant reduction in the number of fertile pollengrains. Most of the pollen grains were aberrant in shape, lackedgerminal apertures and aggregate of the pollen grains. Granulesof ß-1,3-glucan, which have not previously been reported,were often observed to adhere to the surface of the pollen grains.Further observations revealed that the callose wall was almostabsent in the pollen tetrads of transgenic plants. In wild-typeplants, by contrast, the tetrads were surrounded by callosethat was degraded soon after the tetrad stage to release freemicrospores. Thus, the introduced gene for endo-ß-1,3-endoglucanaseunder the control of the Osg6B promoter caused digestion ofthe callose wall at the beginning of the tetrad stage, a timethat was just a little earlier than the time at which endogenousglucanase activity normal appears. These results demonstratethat premature dissolution of the callose wall in pollen tetradscauses male sterility and suggest that the time at which tapetallyproduced glucanase is activate is critical for the normal developmentof microspores. (Received September 29, 1994; Accepted January 30, 1995)  相似文献   

7.
Phosphoglucose isomerase (PGI) catalyzes the interconversion of fructose-6-phosphate and glucose-6-phosphate, which impacts cell carbon metabolic flow. Arabidopsis (Arabidopsis thaliana) contains two nuclear PGI genes respectively encoding plastidial PGI1 and cytosolic PGI (cPGI). The loss of PGI1 impairs the conversion of F6P of the Calvin–Benson cycle to G6P for the synthesis of transitory starch in leaf chloroplasts. Since cpgi knockout mutants have not yet been obtained, they are thought to be lethal. The cpgi lethality can be rescued by expressing CaMV 35S promoter (p35S)-driven cPGI; however, the complemented line is completely sterile due to pollen degeneration. Here, we generated a cpgi mutant expressing p35S::cPGI-YFP in which YFP fluorescence in developing anthers was undetectable specifically in the tapetum and in pollen, which could be associated with male sterility. We also generated RNAi-cPGI knockdown lines with strong cPGI repression in floral buds that exhibited reduced male fertility due to the degeneration of most pollen. Histological analyses indicated that the synthesis of intersporal callose walls was impaired, causing microsporocytes to fail to separate haploid daughter nuclei to form tetrads, which might be responsible for subsequent pollen degeneration. We successfully isolated cpgi knockout mutants in the progeny of a heterozygous cpgi mutant floral-dipped with sugar solutions. The rescued cpgi mutants exhibited diminished young vegetative growth, reduced female fertility, and impaired intersporal callose wall formation in a meiocyte, and, thus, male sterility. Collectively, our data suggest that cPGI plays a vital role in carbohydrate partitioning, which is indispensable for microsporogenesis and early embryogenesis.

The cPGI-mediated carbohydrate partition is essential for early pollen and embryo development in Arabidopsis.  相似文献   

8.
9.
10.
TIWARI  S. C. 《Annals of botany》1983,51(1):17-26
A histochemical investigation on the cell walls of the hypostasein Torenia fournieri Lind. (Scrophulariaceae) revealed thatthey contain large amounts of callose, cellulose and pectins.Except in the middle lamellae, tests failed to show lignin inthe walls. It is surmised that the callose in the hypostasedevelops in order to regulate the flow of metabolites to theembryo sac. Torenia fournieri Lind., hypostase, cell wall, callose  相似文献   

11.
Hydration of pollen of Narcissus pseudonarcissus was retardedand germination blocked in media with supra-optimal concentrationsof osmoticum. Activation of the grains, expressed in circulatorymovement in the vegetative cell, was not blocked. Wall developmentwas disrupted, and pectic material and callose were depositedthroughout. In the absence of calcium many grains burst on hydration.The survivors showed evidence of activation, but few tubes wereformed. In medium with supra-optimal Ca2+, activation proceeded,but where tube tips were produced they became occluded withcallose, which eventually formed a general lining to the intine.Nifedipine, a Ca2+-blocker, did not prevent activation at 10–4M, but reduced callose deposition and inhibited polarized movementin the vegetative cell. Prominences formed at the germinationsites were mostly low and rounded. During recovery in normalmedium, tube tips with normal callose linings were formed. Colchicine,a microtubule inhibitor, had no effect on activation or germination.Cytochalasin D, an actin inhibitor, prevented activation ofthe vegetative cell, but did not arrest all wall deposition.Movement began soon after transfer to normal medium, and somegrains produced adventitious tube tips. While Ca2+ appears notto be essential for activation, these results may be interpretedas indicating links in the normal course of germination betweenthe initial Ca2+ influx at the potential germination sites and:(a) polarization of movement in the vegetative cell, probablyrelated to re-orientation of the actin cytoskeleton; and (b)patterned deposition of callose, which appears to have an importantmorphogenetic role. Narcissus pseudonarcissus, pollen activation, pollen germination, osmotic effects, actin cytoskeleton, nifedipine, cytochalasin D, colchicine, role of Ca2+ flux  相似文献   

12.
The activity of rß-cyanoalanine synthase (CAS, EC4.4.1.9 [EC] ) in cotyledons of cocklebur seeds (Xanthium penn-sylvanicumWallr.) was detected both in the soluble and particulate fractions.The CAS activity of the soluble fraction (cytosolic CAS activity)was 10 times higher than that of the particulate fraction. TheCAS activity of the particulate fraction was confirmed to belocalized in the mitochondria. Both enzymatic activities wereclearly separated by non-denaturing PAGE. The enzyme with cytosolicCAS activity has been extensively purified and separated intothree different forms designated as cyt-1, cyt-2, and cyt-3.According to the SDS-PAGE analysis, the three enzymes are estimatedto be a homodimer composed of 35-kDa sub-units. The purifiedenzymes showed CS activity. Partial amino acid sequences ofcyt-1 were determined and had a high homology with cysteinesynthases (CS, EC 4.2.99.8 [EC] ) from other plant sources. The catalyticaction of the purified CSs in converting cyanide and cysteineinto H2S and rß-cyanoalanine was confirmed by thedetection of significant 14CN incorporation into rß-cyanoalanine.These results indicated that cytosolic CAS activity is due tocytosolic CS and suggested that the CAS activity of CS is likelyto be involved in cyanide metabolism in plant tissues. (Received January 7, 1998; Accepted March 16, 1998)  相似文献   

13.
14.
Levels of subunits of two acetyl-coenzyme A carboxylases werehigh in small leaves of Pisum sativum, decreased with growth,and remained constant in fully expanded leaves. Irradiationof fully expanded leaves induced the cytosolic isozyme only.This result suggests a key role for the cytosolic enzyme inprotection against UV-B. 1Present address: Laboratory of Molecular Genetics, BiotechnologyInstitute, Akita Prefectural College of Agriculture, 2-2 Minami,Ohgata, Akita, 010-04 Japan 2Present address: Laboratory of Plant Molecular Biology, Schoolof Agricultural Sciences Nagoya University, Nagoya, 464-01 Japan  相似文献   

15.
High concentrations of cytosolic Na+ ions induce the time-dependent formation of an inactive state of the Na+/Ca2+ exchanger (NCX), a process known as Na+-dependent inactivation. NCX activity was measured as Ca2+ uptake in fura 2-loaded Chinese hamster ovary (CHO) cells expressing the wild-type (WT) NCX or mutants that are hypersensitive (F223E) or resistant (K229Q) to Na+-dependent inactivation. As expected, 1) Na+-dependent inactivation was promoted by high cytosolic Na+ concentration, 2) the F223E mutant was more susceptible than the WT exchanger to inactivation, whereas the K229Q mutant was resistant, and 3) inactivation was enhanced by cytosolic acidification. However, in contrast to expectations from excised patch studies, 1) the WT exchanger was resistant to Na+-dependent inactivation unless cytosolic pH was reduced, 2) reducing cellular phosphatidylinositol-4,5-bisphosphate levels did not induce Na+-dependent inactivation in the WT exchanger, 3) Na+-dependent inactivation did not increase the half-maximal cytosolic Ca2+ concentration for allosteric Ca2+ activation, 4) Na+-dependent inactivation was not reversed by high cytosolic Ca2+ concentrations, and 5) Na+-dependent inactivation was partially, but transiently, reversed by an increase in extracellular Ca2+ concentration. Thus Na+-dependent inactivation of NCX expressed in CHO cells differs in several respects from the inactivation process measured in excised patches. The refractoriness of the WT exchanger to Na+-dependent inactivation suggests that this type of inactivation is unlikely to be a strong regulator of exchange activity under physiological conditions but would probably act to inhibit NCX-mediated Ca2+ influx during ischemia. ischemia; cytosolic calcium concentration; cytosolic sodium concentration; cellular phosphatidylinositol-4,5-bisphosphate  相似文献   

16.
A Cytosolic Phospholipase A2 from Potato Tissues Appears to Be Patatin   总被引:3,自引:0,他引:3  
Phospholipase (PL) A2 is involved in signal transduction inthe resistance reaction that is induced in potato by inoculationof an incompatible race of Phytophthora infestans, the lateblight fungus, or by treatment with fungal elicitor hyphal wallcomponents (Kawakita et al. 1993). In this study, PLA2 in thesoluble fraction from potato tuber was purified. The followingresults suggested that the enzyme was, in fact, patatin: (1)the molecular mass of the purified enzyme was 40 kDa, the sameas that of patatin; (2) the pI of the purified enzyme was approximately4.75, which corresponds to that of patatin; and (3) the amino-terminalamino acid sequence of the purified enzyme showed a high degreeof homology to that of patatin. Patatin is known as a storageprotein of the potato tuber and it has been shown to have esteraseactivity. However, other enzymatic activities and the function(s)of patatin are unknown. We investigated the PLA activities ofthe purified patatin. The PLA2 activity of the patatin was muchhigher than the PLA1 activity, even though the protein exhibitedboth activities. The PLA2 activity of the enzyme was particularlyapparent when phosphatidylcholine with linoleic acid at thesn-2 position was used as substrate. Lower activity was observedwith phosphatidylcholine with palmitic acid, oleic acid andarachidonic acid at the sn-2 position. (Received October 5, 1995; Accepted February 9, 1996)  相似文献   

17.
The pitcher of the carnivorous plant Sarracenia purpurea L.contains an entrapped body of liquid within which its prey isdigested. Free calcium in the pitcher is derived from eitherthe pitcher walls or from prey falling into the pitcher; inthe absence of exogenous (prey-derived) calcium it will dependon the active and passive calcium regulatory properties of thepitcher walls and may to some extent therefore mimic calciumin the apoplast of plant cells. Using a calcium-specific electrode,the free calcium concentration of the pitchers of Sarraceniaplants was investigated and the effect of adding a variety ofconcentrations of calcium in water determined. The mean pitcherfree calcium concentration in vivo was 2.3 x 10–5 M±2.5x 10–5 M; when pitchers were washed and filled with watercontaining lower calcium concentrations, the concentration inthe pitcher water rose to 1–5 x 10–5 M. When highercalcium concentrations (up to 1 x 10–4 M) were added,the pitcher calcium concentration declined to 1–7 x 10–5M. Concentrations of calcium above 1 x 10–4 M were alsoreduced, but to a lesser extent. Metabolic inhibition of activeion transport, while inhibiting pitcher acidification, did notinhibit regulation of pitcher free calcium, suggested that itoccurs as a result of calcium exchange sites in the pitcherwalls. The data are discussed in relation to the physiologyof Sarracenia pitchers and to the usefulness of the pitcheras a model for free calcium in the higher plant apoplast. Sarracenia purpurea L., carnivorous plant, pitcher, free calcium, plant apoplast  相似文献   

18.
Callose was detected in the cell walls of the tips of growingroot hairs of Trifolium species and the non-legume Phleum pratenseusing u.v. fluorescence of fresh material stained with 0·005%aniline blue. Inoculation of the roots with Rhizobium trifolii,R. leguminosarum, R. meliloti, and R. japonicum, or additionof 10–7 and 10–8 M indole-3-acetic acid (IAA) increasedtip callose formation. Most tip callose was formed at 12 °C, and amounts declinedprogressively at 18, 24, and 30 °C, with very little formedat 36 °C. Tip calloso usually became less and disappearedin individual root hairs as they aged. Callose which appeared prominently in the host cell walls atthe points of initiation of infection threads did not usuallydisappear as the hairs matured. There was little or no extensionof callose along the infection thread and none in the threadtip or in the cell nucleus. Presumptive regions of callose hadsimilar structure and electron density as root hair wall materialand were sometimes related to arrays of vesicles in the hostcytoplasm. The external surface of the hair wall bore smallpegs or papillae (0·1–0·2 µm) continuouswith the outer layer of the wall and possibly associated withattachment of bacteria. Bacteria were usually umboriate at thepoint of attachment and their polyphosphate granules were muchlarger near the root hair than at the distal end.  相似文献   

19.
Several deleterious intra-acinar phenomena are simultaneously triggered on initiating acute pancreatitis. These culminate in acinar injury or inflammatory mediator generation in vitro and parenchymal damage in vivo. Supraphysiologic caerulein is one such initiator which simultaneously activates numerous signaling pathways including non-receptor tyrosine kinases such as of the Src family. It also causes a sustained increase in cytosolic calcium- a player thought to be crucial in regulating deleterious phenomena. We have shown Src to be involved in caerulein induced actin remodeling, and caerulein induced changes in the Golgi and post-Golgi trafficking to be involved in trypsinogen activation, which initiates acinar cell injury. However, it remains unclear whether an increase in cytosolic calcium is necessary to initiate acinar injury or if injury can be initiated at basal cytosolic calcium levels by an alternate pathway. To study the interplay between tyrosine kinase signaling and calcium, we treated mouse pancreatic acinar cells with the tyrosine phosphatase inhibitor pervanadate. We studied the effect of the clinically used Src inhibitor Dasatinib (BMS-354825) on pervanadate or caerulein induced changes in Src activation, trypsinogen activation, cell injury, upstream cytosolic calcium, actin and Golgi morphology. Pervanadate, like supraphysiologic caerulein, induced Src activation, redistribution of the F-actin from its normal location in the sub-apical area to the basolateral areas, and caused antegrade fragmentation of the Golgi. These changes, like those induced by supraphysiologic caerulein, were associated with trypsinogen activation and acinar injury, all of which were prevented by Dasatinib. Interestingly, however, pervanadate did not cause an increase in cytosolic calcium, and the caerulein induced increase in cytosolic calcium was not affected by Dasatinib. These findings suggest that intra-acinar deleterious phenomena may be initiated independent of an increase in cytosolic calcium. Other players resulting in acinar injury along with the Src family of tyrosine kinases remain to be explored.  相似文献   

20.
The effects of Na-orthovanadate, at concentrations only partiallyinhibiting net H+ extrusion, were determined on vacuolar andcytosolic pH by the weak base and weak acid distribution atequilibrium. Treatment with vanadate induces in Elodea densaleaves and in Arabidopsis thaliana seedlings a moderate acidificationof both cell sap and vacuole. Conversely, it induces an alkalinizationof cytosol, this effect being in apparent contrast with a conditionof reduced activity of the H+-transporting plasmalemma ATPase,which should be associated with a cytosolic acidification. InArabidopsis seedlings treated with vanadate, the increase inpH of both cytosol and external medium is associated with adecrease in cell sap buffer capacity, more evident for highervanadate concentrations, and particularly marked in the pH rangebetween 3·5 and 5·5. In these conditions, themalate content is strongly reduced, its decrease almost completelyaccounting for the decrease in cell sap buffer capacity. Anin vitro analysis of the vanadate effect on phosphoenolpyruvatecarboxylase indicates that the decrease in malate content seemssubstantially due to an inhibiting effect of vanadate on thisenzyme. These results stress that the in vivo use of vanadateas an inhibitor of the plasmalemma H+-ATPase must be taken withcaution; in particular, for studying the correlations betweenchanges in net H+ extrusion and changes in cytosolic pH andrelated processes. Key words: Vanadate, malate, cytosolic pH, Elodea densa, Arabidopsis thaliana  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号