首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
phiX RF DNA was cleaved by restriction enzymes from Haemophilus influenzae Rf (Hinf I) and Haemophilus haemolyticus (Hha. I). Twenty one fragments of approximately 25 to 730 base pairs were produced by Hinf I and seventeen fragments of approximately 40 to 1560 base pairs by Hha I. The order of these fragments has been established by digestion on Haemophilus awgyptius (Hae III) and Arthrobacter luteus (Alu I) endonuclease fragments of phiX RF with Hinf I and Hha1. By this method of reciprocal digestion a detailed cleavage map of phiX RF DNA was constructed, which includes also the previously determined Hind II, Hae III and Alu I cleavage maps of phiX 174 RF DNA (1, 2). Moreover, 28 conditional lethal mutants of bacteriophage phiX174 were placed in this map using the genetic fragment assay (3).  相似文献   

2.
We have studied excision-repair of UV-irradiated phiX174 RFI DNA in vitro with UV-specific endonuclease from Micrococcus luteus (UV-endo), DNA polymerase I from Escherichia coli and DNA ligase from phage T4 infected E. coli. Excision-repair was measured a) by physico-chemical methods, i.e. by determination of the conversion of RF I DNA into RF II DNA by UV-endo and by the subsequent conversion of RF II DNA ligase, b) by biological methods i. e. by measuring the ability of the reaction product to form phages upon incubation with spheroplasts from the appropriate strains of E. coli. Using the first method, we have shown, that more than 90% of the pyrimidine dimers can be repaired in vitro; with the latter method we have shown, that the molecules which are repaired as defined by method a) have regained full biological activity. Exonuclease III was found to be not essential for excision-repair in vitro and also did not stimulate repair. From this result we conclude that UV-endo generates 3'OH endgroups, in agreement with results obtained by Hamilton et al. (1974). The usefulness of the method presented in this paper with regard to the study of excision-repair is discussed.  相似文献   

3.
When the enzyme rhodanese (EC 2. 8. 1. 1) is digested with trypsin under controlled conditions, the parent protein is converted from a polypeptide of molecular weight 32,600 to a polypeptide of molecular weight 28,800. This proteolytic conversion occurs with no loss of rhodanese activity. In fact, preliminary results indicate that the polypeptide produced by proteolysis has higher sulfur transferase activity than the native rhodanese.  相似文献   

4.
Dimeric circular duplex DNA of bacteriophage phiX174 and recombination   总被引:2,自引:0,他引:2  
Summary Bacteriophage X174 replicative from DNA (RF DNA) was formed in the presence of chloramphenicol at a concentration of 40 g per ml and isolated at 12 and at 55 min. after infection. The component I RF DNA (double stranded covalently closed and twisted form) was separated and divided into a monomer and multimer (dimer) fraction.The frequency of recombinants found after phage formation in the chloramphenicol treated cells and that found after spheroplast infection with the monomer molecules both increase with the time of RF formation. However, the frequency of recombinant molecules among the dimers remained constant. This finding is explained by the hypothesis that two separate mechanisms act in X174 recombination, one of which is restricted to the formation of dimers.Irradiation with UV of phage prior to infection showed that the frequency of recombinants in monomers increased, as the recombination frequency of phage after (a single) growth (step) did, but that neither the frequency of recombinant molecules in dimers is raised, nor the frequency of dimers. Using a recombination negative host the frequency of recombinant dimer molecules was three to fourfold decreased, whereas the frequency of dimers was only slightly lower (relative to the normal host). These results support the hypothesis mentioned above and moreover lend support to the view that the greater part of the dimers is not formed by recombination events.  相似文献   

5.
6.
Origin and direction phiX174 double- and single-stranded DNA synthesis   总被引:9,自引:0,他引:9  
The origin and direction of both φX174 double-stranded and single-stranded DNA synthesis has been determined by pulsing replicating viral DNA molecules with [3H]thymidine for periods of less than one round of DNA synthesis and examining distribution of activity in the Haemophilus influenzae restriction endonuclease (Hin) DNA fragments of these molecules. In early RFI and RFII DNA intermediates in double-stranded DNA replication, gradients of label were observed which started in the R3 fragment (cistron A) and increased towards the R4 fragment (cistron H). The origin of synthesis is near the R4/R3 junction of the R3 fragment. Thus, φX174 double-stranded DNA synthesis proceeds clockwise around the genetic map (5′ → 3′), in one direction only and starting in the region of cistron A, a conclusion consistent with the genetic experiments of Baas &; Jansz (1972). Similar experiments with the gapped late RFII DNA molecules that have just completed a round of single-stranded viral DNA synthesis demonstrated that φX174 single-stranded DNA synthesis also has a single origin of replication in the region of cistron A, and that the synthesis moves in the 5′ → 3′ direction, around the genetic map. The gap in both the early and the late RFII DNA molecules also appears to be in the R3 fragment containing cistron A.  相似文献   

7.
Poon A  Chao L 《Genetics》2005,170(3):989-999
A compensatory mutation occurs when the fitness loss caused by one mutation is remedied by its epistatic interaction with a second mutation at a different site in the genome. This poorly understood biological phenomenon has important implications, not only for the evolutionary consequences of mutation, but also for the genetic complexity of adaptation. We have carried out the first direct experimental measurement of the average rate of compensatory mutation. An arbitrary selection of 21 missense substitutions with deleterious effects on fitness was introduced by site-directed mutagenesis into the bacteriophage phiX174. For each deleterious mutation, we evolved 8-16 replicate populations to determine the frequency at which a compensatory mutation, instead of the back mutation, was acquired to recover fitness. The overall frequency of compensatory mutation was approximately 70%. Deleterious mutations that were more severe were significantly more likely to be compensated for. Furthermore, experimental reversion of deleterious mutations revealed that compensatory mutations have deleterious effects in a wild-type background. A large diversity of intragenic compensatory mutations was identified from sequencing fitness-recovering genotypes. Subsequent analyses of intragenic mutation diversity revealed a significant degree of clustering around the deleterious mutation in the linear sequence and also within folded protein structures. Moreover, a likelihood analysis of mutation diversity predicts that, on average, a deleterious mutation can be compensated by about nine different intragenic compensatory mutations. We estimate that about half of all compensatory mutations are located extragenically in this organism.  相似文献   

8.
9.
10.
Summary When UV-irradiated X174 was grown in pre-irradiated host cells of various strains, ultraviolet reactivation (UVR) was observed only in recombination proficient strains such as E. coli C (uvrA + recA +) and HF4704 (uvrA - recA +), but not in the recombination deficient strain HF4712 (uvrA + recA -). By increasing the multiplicity of infection, no rise in the amount of such reactivation was observed. From the study of the neutral and alkaline sucrose gradient sedimentation patterns of DNA samples extracted from unirradiated cells infected with unirradiated phage, it appears that after the conversion of the viral single stranded (SS) DNA to the double stranded form (DS), nicks or scissions were produced on it within all three strains, which were ultimately sealed up in the recA + but persisted within the recA - host cells. When UV-irradiated phage infected unirradiated host cells, such nicking of the DS DNA appeared to be much more extensive in uvrA + recA +, but slightly reduced in uvrA + recA - and severely suppressed in uvrA - recA + strains. When the host cells were also UV-irradiated, the conversion of the infecting viral SS DNA to DS DNA as well as its subsequent nicking were reduced in all the three strains to a much greater extent. Although nicking of the DS DNA molecule is an essential step even in the normal intracellular replication of X DNA, the production and the sealing up of such nicks appear not to have any positive correlation with UVR of these phages. A drastic reduction in nicking due te pre-irradiation of the host cells might, however, mean slowing down of the replication of the damaged parental RF molecules which would facilitate their repair perhaps through recombination with the homologous parts of the host genome.  相似文献   

11.
A formaldehyde denaturation map of the replicative form of phiX174 DNA is obtained. The RFI DNA was converted into a linear state by restriction endonuclease pst I which introduces into this DNA a single double-stranded break. The map has four clear-cut peaks. Their positions excellently correlate with the peak positions on the map of equilibrium denaturation theoretically obtained earlier from the known nucleotide sequence of phiX174 DNA. The sequence is also used for a calculation of the maps of smoothed AT-content. The maxima on these maps correlate well with the peaks on the denaturation maps. To reveal the causes of a good correlation between the experimental formaldehyde and theoretical equilibrium denaturation maps, the theoretical formaldehyde denaturation maps are calculated for different conditions (temperature, formaldehyde concentration) using the detailed theory of DNA interaction with formaldehyde developed earlier.  相似文献   

12.
13.
14.
15.
Bacteriophage X174 temperature-sensitive and nonsense mutations in eight cistrons were mapped by using two-, three-, and four-factor genetic crosses. The genetic map is circular with a total length of 24 × 10−4wt recombinants per progeny phage. The cistron order is D-E-F-G-H-A-B-C. High negative interference is seen, consistent with a small closed circular deoxyribonucleic acid molecule as a genome.  相似文献   

16.
Molecular epidemiologic and other studies may require preparation of genomic DNA from large numbers of bacteria in sufficiently pure form for restriction endonuclease digestion, cloning, RAPD-PCR, Southern hybridization, and so on.Staphylococcus and other Gram-positive bacteria have a rigid cell wall and can be difficult to lyse. Here, a simple and rapid method for the preparation of genomic DNA from multiple samples is reported. This method produces clean DNA for use in most molecular biology methods in <90 min.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号