首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bidirectional organelle transport along microtubules is most likely mediated by the opposing forces generated by two microtubule-based motors: kinesin and cytoplasmic dynein. Because the direction and timing of organelle movements are controlled by the cell, the activity of one or both of these motor molecules must be regulated. Recent studies demonstrate that kinesin, kinesin-like proteins and kinesin-associated proteins can be phosphorylated, and suggest that changes in their phosphorylation state may modulate kinesin's ability to interact with either microtubules or organelles. Thus, it is possible that phosphorylation regulates kinesin-driven movements.  相似文献   

2.
The microtubule motors, cytoplasmic dynein and kinesin II, drive pigmented organelles in opposite directions in Xenopus melanophores, but the mechanism by which these or other motors are regulated to control the direction of organelle transport has not been previously elucidated. We find that cytoplasmic dynein, dynactin, and kinesin II remain on pigment granules during aggregation and dispersion in melanophores, indicating that control of direction is not mediated by a cyclic association of motors with these organelles. However, the ability of dynein, dynactin, and kinesin II to bind to microtubules varies as a function of the state of aggregation or dispersion of the pigment in the cells from which these molecules are isolated. Dynein and dynactin bind to microtubules when obtained from cells with aggregated pigment, whereas kinesin II binds to microtubules when obtained from cells with dispersed pigment. Moreover, the microtubule binding activity of these motors/dynactin can be reversed in vitro by the kinases and phosphatase that regulate the direction of pigment granule transport in vivo. These findings suggest that phosphorylation controls the direction of pigment granule transport by altering the ability of dynein, dynactin, and kinesin II to interact with microtubules.  相似文献   

3.
Organelles transported along microtubules are normally moved to precise locations within cells. For example, synaptic vesiceles are transported to the neruronal synapse, the Golgi apparatus is generally found in a perinuclear location, and the membranes of the endoplasmic reticulum are actively extended to the cell periphery. The correct positioning of these organelles depends on microtubules and microtubule motors. Melanophores provide an extreme example of organized organelle transport. These cells are specialized to transport pigment granules, which are coordinately moved towards or away from the cell center, and result in the cell appearing alternately light or dark. Melanophores have proved to be an ideal system for studying the mechanisms by which the cell controls the direction of its organelle transport. Pigment granule dispersion (the movement away from the cell center) requires protein phosphorylation, while pigment aggregation (the movement towards the cell center) requires protein dephosphorylation. The target of this phosphorylation and dephosphorylation event is a protein that interacts with the microtubule motor protein, kinesin. Thus, the direction of organelle transport along microtubules may be regulated by controlling the activity of a microtubule motor.  相似文献   

4.
How do cells order their cytoplasm? While microtubule organizing centers have long been considered essential to conferring order by virtue of their microtubule nucleating activity, attention has currently refocused on the role that microtubule motors play in organizing microtubules. An intriguing set of recent findings(1) reveals that cell fragments, lacking microtubule organizing centers, rapidly organize microtubules into a radial array during organelle transport driven by the microtubule motor, cytoplasmic dynein. Further, interaction of radial microtubules with the cell surface centers the array, revealing that centering information resides not with centrosomes but with organized microtubules.  相似文献   

5.
《Biophysical journal》2020,118(1):243-253
Kinesin motors and their associated microtubule tracks are essential for long-distance transport of cellular cargos. Intracellular activity and proper recruitment of kinesins is regulated by biochemical signaling, cargo adaptors, microtubule-associated proteins, and mechanical forces. In this study, we found that the effect of opposing forces on the kinesin-microtubule attachment duration depends strongly on experimental assay geometry. Using optical tweezers and the conventional single-bead assay, we show that detachment of kinesin from the microtubule is likely accelerated by forces vertical to the long axis of the microtubule due to contact of the single bead with the underlying microtubule. We used the three-bead assay to minimize the vertical force component and found that when the opposing forces are mainly parallel to the microtubule, the median value of attachment durations between kinesin and microtubules can be up to 10-fold longer than observed using the single-bead assay. Using the three-bead assay, we also found that not all microtubule protofilaments are equivalent interacting substrates for kinesin and that the median value of attachment durations of kinesin varies by more than 10-fold, depending on the relative angular position of the forces along the circumference of the microtubule. Thus, depending on the geometry of forces across the microtubule, kinesin can switch from a fast detaching motor (median attachment duration <0.2 s) to a persistent motor that sustains attachment (median attachment duration >3 s) at high forces (5 pN). Our data show that the load-bearing capacity of the kinesin motor is highly variable and can be dramatically affected by off-axis forces and forces across the microtubule lattice, which has implications for a range of cellular activities, including cell division and organelle transport.  相似文献   

6.
《The Journal of cell biology》1995,131(4):1039-1053
In the study of motor proteins, the molecular mechanism of mechanochemical coupling, as well as the cellular role of these proteins, is an important issue. To assess these questions we introduced cDNA of wild-type and site-directed mutant kinesin heavy chains into fibroblasts, and analyzed the behavior of the recombinant proteins and the mechanisms involved in organelle transports. Overexpression of wild-type kinesin significantly promoted elongation of cellular processes. Wild-type kinesin accumulated at the tips of the long processes, whereas the kinesin mutants, which contained either a T93N- or T93I mutation in the ATP-binding motif, tightly bound to microtubules in the center of the cells. These mutant kinesins could bind to microtubules in vitro, but could not dissociate from them even in the presence of ATP, and did not support microtubule motility in vitro, thereby indicating rigor-type mutations. Retrograde transport from the Golgi apparatus to the endoplasmic reticulum, as well as lysosome dispersion, was shown to be a microtubule-dependent, plus-end- directed movement. The latter was selectively blocked in the rigor- mutant cells, although the microtubule minus-end-directed motion of lysosomes was not affected. We found the point mutations that make kinesin motor in strong binding state with microtubules in vitro and showed that this mutant causes a dominant effect that selectively blocks anterograde lysosome membrane transports in vivo.  相似文献   

7.
Conventional kinesin is a ubiquitous organelle transporter that moves cargo toward the plus-ends of microtubules. In addition, several in vitro studies indicated a role of conventional kinesin in cross-bridging and sliding microtubules, but in vivo evidence for such a role is missing. In this study, we show that conventional kinesin mediates microtubule-microtubule interactions in the model fungus Ustilago maydis. Live cell imaging and ultrastructural analysis of various mutants in Kin1 revealed that this kinesin-1 motor is required for efficient microtubule bundling and participates in microtubule bending in vivo. High levels of Kin1 led to increased microtubule bending, whereas a rigor-mutation in the motor head suppressed all microtubule motility and promoted strong microtubule bundling, indicating that kinesin can form cross-bridges between microtubules in living cells. This effect required a conserved region in the C terminus of Kin1, which was shown to bind microtubules in vitro. In addition, a fusion protein of yellow fluorescent protein and the Kin1tail localized to microtubule bundles, further supporting the idea that a conserved microtubule binding activity in the tail of conventional kinesins mediates microtubule-microtubule interactions in vivo.  相似文献   

8.
Microtubules take part in several mechanisms of intracellular motility, including organelle transport and mitosis. We have studied the ability of Xenopus egg extract to support nuclear membrane and pore complex formation when microtubule dynamics are manipulated. In this report we show that the formation of a nuclear envelope surrounding sperm chromatin requires polymerized microtubules. We have observed that microtubule-depolymerizing reagents, and AS-2, a known inhibitor of the microtubule motor protein kinesin, do not inhibit the formation of a double nuclear membrane. However these double membranes contain no morphologically identifiable nuclear pore complexes and do not support the accumulation of karyophilic proteins. In contrast, the assembly of annulate lamellae, cytoplasmic structures containing a subset of pore complex proteins, was not affected. Our data show that not only polymerized microtubules, but also the microtubule motor protein kinesin, are involved in the formation of the nuclear envelope. These results support the conclusion that multiple nuclear envelope-forming mitotic vesicle populations exist, that microtubules play an essential and selective role in the transport of nuclear envelope-forming vesicle population(s), and that separate mechanisms are involved in nuclear envelope and annulate lamellae formation.  相似文献   

9.
Kinesin is a force-generating ATPase that drives the sliding movement of microtubules on glass coverslips and the movement of plastic beads along microtubules. Although kinesin is suspected to participate in microtubule-based organelle transport, the exact role it plays in this process is unclear. To address this question, we have developed a quantitative assay that allows us to determine the ability of soluble factors to promote organelle movement. Salt-washed organelles from squid axoplasm exhibited a nearly undetectable level of movement on purified microtubules. Their frequency of movement could be increased greater than 20-fold by the addition of a high speed axoplasmic supernatant. Immunoadsorption of kinesin from this supernatant decreased the frequency of organelle movement by more than 70%; organelle movements in both directions were markedly reduced. Surprisingly, antibody purified kinesin did not promote organelle movement either by itself or when it was added back to the kinesin-depleted supernatant. This result suggested that other soluble factors necessary for organelle movement were removed along with kinesin during immunoadsorption of the supernatant. A high level of organelle motor activity was recovered in a high salt eluate of the immunoadsorbent that contained only little kinesin. On the basis of these results we propose that organelle movement on microtubules involves other soluble axoplasmic factors in addition to kinesin.  相似文献   

10.
A high molecular weight microtubule binding protein has been isolated from homogenates of Dictyostelium. Because of its sedimentation velocity (20s), ATP-sensitive binding to microtubules, UV-vanadate-ATP mediated fragmentation, prominent CTPase activity, and its ability to produce limited microtubule movement in vitro, we consider this protein to be a form of cytoplasmic dynein. A polyclonal antibody monospecific to this protein was produced, and dynein's intracellular distribution in ameboid cells was examined by immunofluorescence. The antibody labels a punctate cytoplasmic pattern, localizes to a spherical region adjacent to the nucleus, and also appears to label the nuclei. The punctate staining pattern is consistent with cytoplasmic dynein's proposed function in organelle transport. The spherical juxtanuclear object stained is coincident with this cell's microtubule organizing center, an obvious termination point for minus-end directed microtubule motors. By immunofluorescence, there does not appear to be a substantial amount of dynein in the intranuclear mitotic spindles of Dictyostelium. These data provide evidence for localization of cytoplasmic dynein in cells, and suggest that Dictyostelium will be a useful system in which to study the molecular biology of microtubule-associated motor enzymes.  相似文献   

11.
Kinesin and dynein are motor proteins that move in opposite directions along microtubules. In this study, we examine the consequences of having kinesin and dynein (ciliary outer arm or cytoplasmic) bound to glass surfaces interacting with the same microtubule in vitro. Although one might expect a balance of opposing forces to produce little or no net movement, we find instead that microtubules move unidirectionally for several microns (corresponding to hundreds of ATPase cycles by a motor) but continually switch between kinesin-directed and dynein-directed transport. The velocities in the plus-end (0.2-0.3 microns/s) and minus-end (3.5-4 microns/s) directions were approximately half those produced by kinesin (0.5 microns/s) and ciliary dynein (6.7 microns/s) alone, indicating that the motors not contributing to movement can interact with and impose a drag upon the microtubule. By comparing two dyneins with different duty ratios (percentage of time spent in a strongly bound state during the ATPase cycle) and varying the nucleotide conditions, we show that the microtubule attachment times of the two opposing motors as well as their relative numbers determine which motor predominates in this assay. Together, these findings are consistent with a model in which kinesin-induced movement of a microtubule induces a negative strain in attached dyneins which causes them to dissociate before entering a force-generating state (and vice versa); reversals in the direction of transport may require the temporary dissociation of the transporting motor from the microtubule. The bidirectional movements described here are also remarkably similar to the back-and-forth movements of chromosomes during mitosis and membrane vesicles in fibroblasts. These results suggest that the underlying mechanical properties of motor proteins, at least in part, may be responsible for reversals in microtubule-based transport observed in cells.  相似文献   

12.
In axons, organelles move away from (anterograde) and toward (retrograde) the cell body along microtubules. Previous studies have provided compelling evidence that conventional kinesin is a major motor for anterograde fast axonal transport. It is reasonable to expect that cytoplasmic dynein is a fast retrograde motor, but relatively few tests of dynein function have been reported with neurons of intact organisms. In extruded axoplasm, antibody disruption of kinesin or the dynactin complex (a dynein activator) inhibits both retrograde and anterograde transport. We have tested the functions of the cytoplasmic dynein heavy chain (cDhc64C) and the p150(Glued) (Glued) component of the dynactin complex with the use of genetic techniques in Drosophila. cDhc64C and Glued mutations disrupt fast organelle transport in both directions. The mutant phenotypes, larval posterior paralysis and axonal swellings filled with retrograde and anterograde cargoes, were similar to those caused by kinesin mutations. Why do specific disruptions of unidirectional motor systems cause bidirectional defects? Direct protein interactions of kinesin with dynein heavy chain and p150(Glued) were not detected. However, strong dominant genetic interactions between kinesin, dynein, and dynactin complex mutations in axonal transport were observed. The genetic interactions between kinesin and either Glued or cDhc64C mutations were stronger than those between Glued and cDhc64C mutations themselves. The shared bidirectional disruption phenotypes and the dominant genetic interactions demonstrate that cytoplasmic dynein, the dynactin complex, and conventional kinesin are interdependent in fast axonal transport.  相似文献   

13.
Kinesin, a microtubule-activated ATPase and putative motor protein for the transport of membrane-bounded organelles along microtubules, was purified from bovine brain and used as an immunogen for the production of murine monoclonal antibodies. Hybridoma lines that secreted five distinct antikinesin IgGs were cloned. Three of the antibodies reacted on immunoblots with the 124-kD heavy chain of kinesin, while the other two antibodies recognized the 64-kD light chain. When used for immunofluorescence microscopy, the antibodies stained punctate, cytoplasmic structures in a variety of cultured mammalian cell types. Consistent with the identification of these structures as membrane-bounded organelles was the observation that cells which had been extracted with Triton X-100 before fixation contained little or no immunoreactive material. Staining of microtubules in the interphase cytoplasm or mitotic spindle was never observed, nor were associated structures, such as centrosomes and primary cilia, labeled by any of the antibodies. Nevertheless, in double-labeling experiments using antibodies to kinesin and tubulin, kinesin-containing particles were most abundant in regions where microtubules were most highly concentrated and the particles often appeared to be aligned on microtubules. These results constitute the first direct evidence for the association of kinesin with membrane-bounded organelles, and suggest a molecular mechanism for organelle motility based on transient interactions of organelle-bound kinesin with the microtubule surface.  相似文献   

14.
Recent studies have shown that the targeting of substrate adhesions by microtubules promotes adhesion site disassembly (Kaverina, I., O. Krylyshkina, and J.V. Small. 1999. J. Cell Biol. 146:1033-1043). It was accordingly suggested that microtubules serve to convey a signal to adhesion sites to modulate their turnover. Because microtubule motors would be the most likely candidates for effecting signal transmission, we have investigated the consequence of blocking microtubule motor activity on adhesion site dynamics. Using a function-blocking antibody as well as dynamitin overexpression, we found that a block in dynein-cargo interaction induced no change in adhesion site dynamics in Xenopus fibroblasts. In comparison, a block of kinesin-1 activity, either via microinjection of the SUK-4 antibody or of a kinesin-1 heavy chain construct mutated in the motor domain, induced a dramatic increase in the size and reduction in number of substrate adhesions, mimicking the effect observed after microtubule disruption by nocodazole. Blockage of kinesin activity had no influence on either the ability of microtubules to target substrate adhesions or on microtubule polymerisation dynamics. We conclude that conventional kinesin is not required for the guidance of microtubules into substrate adhesions, but is required for the focal delivery of a component(s) that retards their growth or promotes their disassembly.  相似文献   

15.
It has been recently shown that depolymerization of microtubules induces the elongation of focal contacts at the leading edge. On the other hand, cell shape and pseudopodial activity were found to depend on the microtubule-based motor kinesin. In this paper, we examine whether kinesin is involved in controlling the dynamics of adhesive structures at the cell surface. Microinjection of an antiblocking kinesin activityin vitrocauses focal contact elongation similar to the effect of microtubule-depolymerizing drugs. Thus, the role of microtubules in cell adhesion lies in the supporting kinesin-based transport to the adhesion sites.  相似文献   

16.
Conventional kinesin (Kinesin-1), the founding member of the kinesin family, was discovered in the squid giant axon, where it is thought to move organelles on microtubules. In this study, we identify a second squid kinesin by searching an expressed sequence tag database derived from the ganglia that give rise to the axon. The full-length open reading frame encodes a 1753 amino acid sequence that classifies this protein as a Kinesin-3. Immunoblots demonstrate that this kinesin, unlike Kinesin-1, is highly enriched in chaotropically stripped axoplasmic organelles, and immunogold electron microscopy (EM) demonstrates that Kinesin-3 is tightly bound to the surfaces of these organelles. Video microscopy shows that movements of purified organelles on microtubules are blocked, but organelles remain attached, in the presence Kinesin-3 antibody. Immunogold EM of axoplasmic spreads with antibody to Kinesin-3 decorates discrete sites on many, but not all, free organelles and localizes Kinesin-3 to organelle/microtubule interfaces. In contrast, label for Kinesin-1 decorates microtubules but not organelles. The presence of Kinesin-3 on purified organelles, the ability of an antibody to block their movements along microtubules, the tight association of Kinesin-3 with motile organelles and its distribution at the interface between native organelles and microtubules suggest that Kinesin-3 is a dominant motor in the axon for unidirectional movement of organelles along microtubules.  相似文献   

17.
The association of membrane-bounded cell organelles to microtubules is crucial for determination of their shape, intracellular localization and translocation. We have shown previously the high affinity binding of peroxisomes to microtubules which appears to be of static nature as in vivo studies indicate that only a few peroxisomes move along the microtubular tracks. In order to characterize the interactions of peroxisomes with microtubules, we have developed a semiquantitative in vitro binding assay, which is based on the association of highly purified rat liver peroxisomes to microtubules coated onto microtiterplates. The binding was visualized by differential interference contrast and immunofluorescence using a confocal laser scanning microscope. The binding was concentration dependent and saturable, being affected by time, temperature, and pH. Addition of ATP or the motor proteins kinesin and dynein increased the binding capacity, while ATP-depletion or microtubule associated proteins (MAPs) decreased it. KCl treatment of peroxisomes reduced the binding, which was restored by dialyzed KCl-stripping eluate as well as by rat liver cytosol. The reconstituting effect of cytosol was abolished by its pretreatment with proteases or N-ethylmaleimide. Moreover, the treatment of peroxisomes with proteases or N-ethylmaleimide reduced their binding, which was not reversed by cytosol. These results suggest the involvement of a peroxisomal membrane protein and cytosolic factor(s) in the binding of peroxisomes to microtubules. This notion is supported by the observation that distinct subfractions of dialyzed KCl-stripping eluate obtained by gel chromatography augmented the binding. Those subfractions, as well as purified peroxisome fractions, exhibited strong immunoreactivity with an antibody to cytoplasmic linker protein (CLIP)-115, revealing a 70-kDa polypeptide. Moreover, immunodepletion of KCl-stripping eluate and its subfractions with an antibody to the conserved microtubule binding domain of CLIPs, abolished their promoting effect on the binding, thus suggesting the involvement of a CLIP-related protein in the binding of peroxisomes to microtubules.  相似文献   

18.
The distribution and dynamics of both the ER and Golgi complex in animal cells are known to be dependent on microtubules; in many cell types the ER extends toward the plus ends of microtubules at the cell periphery and the Golgi clusters at the minus ends of microtubules near the centrosome. In this study we provide evidence that the microtubule motor, kinesin, is present on membranes cycling between the ER and Golgi and powers peripherally directed movements of membrane within this system. Immunolocalization of kinesin at both the light and electron microscopy levels in NRK cells using the H1 monoclonal antibody to kinesin heavy chain, revealed kinesin to be associated with all membranes of the ER/Golgi system. At steady-state at 37 degrees C, however, kinesin was most concentrated on peripherally distributed, pre- Golgi structures containing beta COP and vesicular stomatitis virus glycoprotein newly released from the ER. Upon temperature reduction or nocodazole treatment, kinesin's distribution shifted onto the Golgi, while with brefeldin A (BFA)-treatment, kinesin could be found in both Golgi-derived tubules and in the ER. This suggested that kinesin associates with membranes that constitutively cycle between the ER and Golgi. Kinesin's role on these membranes was examined by microinjecting kinesin antibody. Golgi-to-ER but not ER-to-Golgi membrane transport was found to be inhibited by the microinjected anti-kinesin, suggesting kinesin powers the microtubule plus end-directed recycling of membrane to the ER, and remains inactive on pre-Golgi intermediates that move toward the Golgi complex.  相似文献   

19.
The kinesin superfamily of microtubule motor proteins is important in many cellular processes, including mitosis and meiosis, vesicle transport, and the establishment and maintenance of cell polarity. We have characterized two related kinesins in fission yeast, klp5+ and klp6+,, that are amino-terminal motors of the KIP3 subfamily. Analysis of null mutants demonstrates that neither klp5+ nor klp6+, individually or together, is essential for vegetative growth, although these mutants have altered microtubule behavior. klp5Delta and klp6Delta are resistant to high concentrations of the microtubule poison thiabendazole and have abnormally long cytoplasmic microtubules that can curl around the ends of the cell. This phenotype is greatly enhanced in the cell cycle mutant cdc25-22, leading to a bent, asymmetric cell morphology as cells elongate during cell cycle arrest. Klp5p-GFP and Klp6p-GFP both localize to cytoplasmic microtubules throughout the cell cycle and to spindles in mitosis, but their localizations are not interdependent. During the meiotic phase of the life cycle, both of these kinesins are essential. Spore viability is low in homozygous crosses of either null mutant. Heterozygous crosses of klp5Delta with klp6Delta have an intermediate viability, suggesting cooperation between these proteins in meiosis.  相似文献   

20.
Winey M  Bloom K 《Genetics》2012,190(4):1197-1224
The Saccharomyces cerevisiae mitotic spindle in budding yeast is exemplified by its simplicity and elegance. Microtubules are nucleated from a crystalline array of proteins organized in the nuclear envelope, known as the spindle pole body in yeast (analogous to the centrosome in larger eukaryotes). The spindle has two classes of nuclear microtubules: kinetochore microtubules and interpolar microtubules. One kinetochore microtubule attaches to a single centromere on each chromosome, while approximately four interpolar microtubules emanate from each pole and interdigitate with interpolar microtubules from the opposite spindle to provide stability to the bipolar spindle. On the cytoplasmic face, two to three microtubules extend from the spindle pole toward the cell cortex. Processes requiring microtubule function are limited to spindles in mitosis and to spindle orientation and nuclear positioning in the cytoplasm. Microtubule function is regulated in large part via products of the 6 kinesin gene family and the 1 cytoplasmic dynein gene. A single bipolar kinesin (Cin8, class Kin-5), together with a depolymerase (Kip3, class Kin-8) or minus-end-directed kinesin (Kar3, class Kin-14), can support spindle function and cell viability. The remarkable feature of yeast cells is that they can survive with microtubules and genes for just two motor proteins, thus providing an unparalleled system to dissect microtubule and motor function within the spindle machine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号