首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B R Lu  R Bothmer 《Génome》1993,36(5):863-876
The objectives of this study were to determine the genomic constitution and to explore the genomic variation within four Chinese endemic Elymus species, i.e., E. brevipes (Keng) L?ve (2n = 4x = 28) and E. yangii B.R. Lu (2n = 4x = 28), E. anthosachnoides (Keng) L?ve (2n = 4x = 28), and E. altissimus (Keng) L?ve (2n = 4x = 28). Intraspecific crosses between different populations of the four Elymus species, as well as interspecific hybridizations among the four target species, and with six analyzer species containing well-known genomes, i.e., E. caninus (L.) L. (2n = 4x = 28, SH), E. sibiricus L. (2n = 4x = 28, SH), E. semicostatus (Lees ex Steud.) Melderis (2n = 4x = 28, SY), E. parviglumis (Keng) L?ve (2n = 4x = 28, SY), E. tsukushiensis Honda (2n = 6x = 42, SHY), and E. himalayanus (Nevski) Tzvelev (2n = 6x = 42, SHY), were achieved through the aid of embryo rescue. Chromosome pairing behaviors were studied in the parental species and their hybrids. Numerical analysis on chromosome pairing was made on the interspecific hybrids. With one exception, each meiotic configuration at metaphase I in the hybrids involving the target taxa and the analyzer species containing the "SH" genomes fit a 2:1:1 model with x-values ranging between 0.91 and 1.00; chromosome pairing in the hybrids involving analyzer parents with the "SY" genomes match a 2:2 model, with x-values between 0.97 and 0.99. All pentaploid hybrids with a genomic formula "SSYYH," except for two crosses having unexpected low c-values, had pairing patterns fitting the 2:2:1 model with x-values varying between 0.96 and 1.00. It is concluded based on hybridization, fertility, and chromosome pairing data that (i) the four target Elymus species are strictly allotetraploid taxa, (ii) they are closely related species, all comprised of the "SY" genomes, (iii) minor genomic structural rearrangements have occurred within the four Elymus species, and (iv) meiotic pairing regulator(s) exists in some of the Elymus taxa studied.  相似文献   

2.
B R Lu  K B Jensen  B Salomon 《Génome》1993,36(6):1157-1168
To investigate genomic relationships of Elymus tschimganicus (Drobov) Tzvelev (2n = 6x = 42, S1S2Y genomes) and E. glaucissimus (M. Pop.) Tzvelev (2n = 6x = 42, S1S2Y genomes), interspecific hybridizations of the two target species were carried out with 27 other Elymus species containing the SH, SY, SYH, SYP, SYW, and SH1H2 genomes, respectively, collected from different geographic regions. Chromosome pairing behavior was analyzed at metaphase I in 27 hybrids representing 23 hybrid combinations, and overall genomic relationships of the two target species with the other Elymus taxa were estimated. The study concluded that (i) interspecific hybridization was principally easy to perform between the Elymus species, but no general pattern of crossability was obtained, and all hybrids were completely sterile, (ii) the two species have a similar meiotic pattern in their hybrids with the other Elymus species, and (iii) species containing the SY, SYP, and SYH genomes have a generally higher level of genomic homology to the target species than those possessing the SH genomes, and the South American hexaploid with the SH1H2 genomes has the lowest level of genomic homology to the two target taxa.  相似文献   

3.
B Salomon 《Génome》1993,36(5):899-905
Meiotic pairing in 16 interspecific hybrids in the genus Elymus is reported. The hybrids were made among seven species in the Elymus semicostatus group, viz., E. semicostatus, E. validus (subgroup I), E. abolinii (subgroup II), E. fedtschenkoi, E. nevskii, E. praeruptus (subgroup III), and E. panormitanus (subgroup IV). All species are tetraploid (2n = 4x = 28) and possess the SY genomes. Meiotic pairing was distinctly higher in hybrids made within subgroups than between subgroups, but the genomes in E. panormitanus have differentiated from those in the other species. These results generally support the subdivision of the E. semicostatus group based on morphological data but also indicate that the subgroups are more distantly related than previously believed, and that the group may be nonmonophyletic.  相似文献   

4.
Intergeneric crosses have been made between Psathyrostachys huashanica (2x= 14, NN) and three Elymus species, namely, E. pendulinus (2n = 4x = 28, SSYY), E. ciliaris (2n = 4x = 28, SSYY), and E. tsukushiensis (2n = 6x = 42, SSHHYY). Three accessions of E. tsukushiensis from different localities crossed with P. huashanica produced adult hybrid plants. Although completely sterile, the hybrid plants developed rather vigorously, and were morphologically intermediate between the two parents. Chromosome configuration of 24.62I + 1.51II + 0.03III per cell characterized meioses of the hybrids, but there existed slight variations among different combinations. These results indicate that there is little or no chromosome homoeology between "N" genome of P. huashanica and "S", "H" or "Y" genomes of E. tsukushiensis.  相似文献   

5.
K B Jensen 《Génome》1993,36(1):72-76
This paper describes the cytogenetics of the South American grass Elymus magellanicus (2n = 4x = 28) and its inter- and intra-generic hybrids with North American Pseudoroegneria spicata (2n = 2x = 14; SS), Iranian Hordeum violaceum (2n = 2x = 14; HH), and North American E. trachycaulus (2n = 4x = 28; SSHH), E. lanceolatus (2n = 4x = 28; SSHH), and E. glaucus (2n = 4x = 28; SSHH). Chromosome pairing in the F1 hybrid of E. magellanicus x P. spicata (2n = 3x = 21) averaged 4.09 bivalents per cell. Bivalent frequencies in the E. magellanicus x H. violaceum (2n = 3x = 21) averaged 4.86 bivalents per cell. Bivalent formation (frequencies) in hybrids between North and South American tetraploids averaged 11.42 in E. magellanicus x E. trachycaulus, 13.02 in E. magellanicus x E. lanceolatus, and 10.91 in E. magellanicus x E. glaucus. Meiotic data demonstrated that E. magellanicus is an allotetraploid having the same basic genomes (SSHH) as North American E. trachycaulus, E. lanceolatus, and E. glaucus.  相似文献   

6.
小麦族鹅观草属三种植物的生物系统学研究   总被引:8,自引:2,他引:6  
本文研究了禾本科小麦族鹅观草属的3个种:缘毛鹅观草(Roegneria pendulina Neuski 2n=4x=28),纤毛鹅观草(R. ciliaris (Trin.) Nevski 2n=4x=28)和鹅观草(R. kamoji Ohwi 2n=6x=42)及其种间杂种的形态变异和染色体配对行为。各杂种F_1的减数分裂染色体配对数较高,但杂种高度不育。在杂种减数分裂中还观察到一定频率的多价体形成。以上结果充分表明该3种植物享有两个共同的基本染色体组,在S和Y染色体组之间发生过染色体相互易位,缘毛鹅观草的染色体组可拟定为S~PY~P。  相似文献   

7.
Genomic relationships of 13 tetraploid species within the AsiaticElymus parviglumis group containing the SY genomes were assessed by analysing chromosome pairing at metaphase I of the parental species and their interspecific hybrids. Two major genomic subgroups among the tetraploids were identified from the cluster analysis of the averaged c-values, namely, theE. caucasicus subgroup (two species) and theE. parviglumis subgroup (11 species). The genomic affinity of theElymus species is associated with the interspecific geographic distance.After October 1, 1993  相似文献   

8.
Summary In an attempt to transfer genes for salt tolerance and other desirable traits from the diploid wheatgrasses, Thinopyrum bessarabicum (2n=2x=14; JJ genome) and Lophopyrum elongatum (2n=2x=14; EE genome), into durum wheat cv Langdon (2n=4x=28; AABB genomes), trigeneric hybrids with the genomic constitution ABJE were synthesized and cytologically characterized. C-banding analysis of somatic chromosomes of the A, B, J, and E genomes in the same cellular environment revealed distinct banding patterns; each of the 28 chromosomes could be identified. They differed in the total amount of constitutive heterochromatin. Total surface area and C-banded area of each chromosome were calculated. The B genome was the largest in size, followed by the J, A, and E genomes, and its chromosomes were also the most heavily banded. Only 25.8% of the total chromosome complement in 10 ABJE hybrids showed association, with mean arm-pairing frequency (c) values from 0.123 to 0.180 and chiasma frequencies from 3.36 to 5.02 per cell. The overall mean pairing was 0.004 ring IV + 0.046 chain IV + 0.236 III + 0.21 ring II + 2.95 rod II + 20.771. This is total pairing between chromosomes of different genomes, possibly between A and B, A and J, A and E, B and J, B and E, and J and E, in the presence of apparently functional pairing regulator Ph1. Because chromosome pairing in the presence of Ph1 seldom occurs between A and B, or between J and E, it was inferred that pairing between the wheat chromosomes and alien chromosomes occurred. The trigeneric hybrids with two genomes of wheat and one each of Thinopyrum and Lophopyrum should be useful in the production of cytogenetic stocks to facilitate the transfer of alien genes into wheat.  相似文献   

9.
Wild grasses in the tribe Triticeae, some in the primary or secondary gene pool of wheat, are excellent reservoirs of genes for superior agronomic traits, including resistance to various diseases. Thus, the diploid wheatgrasses Thinopyrum bessarabicum (Savul. and Rayss) A. Love (2n = 2x = 14; JJ genome) and Lophopyrum elongatum (Host) A. Love (2n = 2x = 14; EE genome) are important sources of genes for disease resistance, e.g., Fusarium head blight resistance that may be transferred to wheat. By crossing fertile amphidiploids (2n = 4x = 28; JJEE) developed from F1 hybrids of the 2 diploid species with appropriate genetic stocks of durum wheat, we synthesized trigeneric hybrids (2n = 4x = 28; ABJE) incorporating both the J and E genomes of the grass species with the durum genomes A and B. Trigeneric hybrids with and without the homoeologous-pairing suppressor gene, Ph1, were produced. In the absence of Ph1, the chances of genetic recombination between chromosomes of the 2 useful grass genomes (JE) and those of the durum genomes (AB) would be enhanced. Meiotic chromosome pairing was studied using both conventional staining and fluorescent genomic in situ hybridization (fl-GISH). As expected, the Ph1-intergeneric hybrids showed low chromosome pairing (23.86% of the complement), whereas the trigenerics with ph1b (49.49%) and those with their chromosome 5B replaced by 5D (49.09%) showed much higher pairing. The absence of Ph1 allowed pairing and, hence, genetic recombination between homoeologous chromosomes. Fl-GISH analysis afforded an excellent tool for studying the specificity of chromosome pairing: wheat with grass, wheat with wheat, or grass with grass. In the trigeneric hybrids that lacked chromosome 5B, and hence lacked the Ph1 gene, the wheat-grass pairing was elevated, i.e., 2.6 chiasmata per cell, a welcome feature from the breeding standpoint. Using Langdon 5D(5B) disomic substitution for making trigeneric hybrids should promote homoeologous pairing between durum and grass chromosomes and hence accelerate alien gene transfer into the durum genomes.  相似文献   

10.
Elymus与普通小麦属间杂种的细胞遗传学研究   总被引:6,自引:2,他引:4  
卢宝荣 《遗传学报》1992,19(2):150-155
本研究以Elymus pendulinus(Nevski)Tzvelev(2n=4x=28,SSYY)、E.shandongenisis B.Salomon(2n=4x=28,SSYY)与普通小麦(Triticum aestivum L.:2n=6x=42,AABBDD)进行了属间远缘杂交。通过对杂种胚的离体培养,两个组合均产生了杂种F_1植株。杂种F_1为多年生,植株生长旺盛;形态上介于亲本种之间而兼具双亲的某些特征;穗状花序发育正常,但均完全不育。两个组合的根尖和花粉母细胞染色体数目为2n-5x=35。通过对杂种减数分裂染色体配对行为的分析,发现其MI染色体的配对水平很低,二价体均为棒状,每细胞的平均染色体交叉数在0.25-0.31之间。这表明E.pendulinus t E.shandongensis 所含的SY染色体组与普通小麦的ABD染色体之间的同源程度很低。由于在E.shandongeasis 及其它具有SY染色体组的Elymus 单倍体中,SY染色体组之间的部份同源染色体配对数均明显高于该杂种中的配对数,这表明存在于普通小麦中的ph基因及其它具类似作用的基因系统能抑制SY染色体组之间的部份同源染色体配对。  相似文献   

11.
Two Elymus ambiguus Vasey & Scribn. collections from Utah and Idaho were 2n = 28, and the species behaved meiotically as an allotetraploid. The E. ambiguus plants were highly self-sterile, and they hybridized readily with Asian E. junceus Fisch. (2n = 14), E. karataviensis Roshev. (2n = 28), E. multicaulis Kar. & Kir. (2n = 28), and North American E. innovatus Beal (2n = 28). Chromosome pairing at metaphase-I in the E. ambiguus X E. junceus triploid hybrids indicated that one E. ambiguus genome was closely homologous with the E. junceus genome. Chromosome pairing in the tetraploid hybrids indicated that both E. ambiguus genomes were more or less homologous with the genomes of E. karataviensis, E. multicaulis, and E. innovatus. The basic genome formula of E. ambiguus may be written as JJXX, where J is the E. junceus genome and X is a genome of unknown origin. Chromosome pairing in the hybrids indicated that E. ambiguus is more closely related to North American E. innovatus than to the Asian species. The E. ambiguus X E. innovatus hybrids were the only hybrids that set seed. Gene flow between E. ambiguus and E. innovatus is biologically possible, but geographic separation of the species precludes natural introgression.  相似文献   

12.
In this study, we review the classification of two species, Elymus hispanicus and E. marginatus, which are restricted to highly valuable and sensitive Mediterranean ecosystems. The genomic composition of the two species is analysed by in situ hybridization. In addition, lodicule morphology and foliar anatomy of both species are compared with those of E. caninus, E. repens, E. sibiricus (i.e., the type species of Elymus s.s.) and Pseudoroegneria strigosa (i.e., the type species of Pseudoroegneria). The genomic formula 2n = 8x = 56; HStStSt is proposed for E. hispanicus and 2n = 4x = 28; StSt for E. marginatus. In this latter species, the absence of the ribosomal genes in one of the two St genomes suggests that diploidization may have occurred during the evolution the species. Regarding foliar anatomy, E. hispanicus, E. caninus, E. repens, and E. sibiricus shared several characteristics, but the leaf blades of E. marginatus proved anatomically more similar to those of Ps. strigosa. The data compiled support the contention that: (1) E. hispanicus belongs to Elymus s.s.; (2) E. marginatus should be transferred to Pseudoroegneria; and (3) the morphology of the lodicules should be carefully reconsidered for appropriately describing the boundaries between Elymus s.s. and Pseudoroegneria. The new combination Ps. marginata is proposed and a detailed iconography of the plant is provided.  相似文献   

13.
Prem P. Jauhar 《Chromosoma》1975,52(2):103-121
With a view to eclucidating chromosome relationships between Lolium perenne (Lp), L. multiflorum (Lm) and Festuca pratensis (Fp), chromosome pairing in different diploid (2n=14), auto-allotriploid (2n=3x=21), trispecific (2n=3x=21), amphidiploid (2n=4x=28) and auto-allohexaploid (2n=6x=42) hybrids between them was analysed. At all these levels of ploidy there was very good chiasmate pairing between the chromosomes of the three species and, on the whole, there was little evidence of preferential pairing of the chromosomes of a particular species in the triploid, tetraploid and hexaploid hybrids. A critical test for this also came from the synaptic ability of the chromosomes of the single genome with those of the duplicated genome in the auto-allotriploids which formed predominantly trivalents with 2, 3 or even 4 chiasmata. Moreover, the homology between the Lp and Lm chromosomes seems strong enough to pass the discrimination limits of the B-chromosomes which do not suppress homoeologous pairing in the Lp LmLm triploid and LpLm diploid hybrids. — The triploids having two genomes of a Lolium species and one of F. pratensis had some male and female fertility which suggested genetic compatibility of the parental chromosomes resulting, presumably, in compensation at the gametic level. Also, the occurrence of comparable chiasma frequencies in the auto-allotriploids and trispecific hybrids showed that they were not markedly affected whether two doses of one genome and one of the other or all the three different genomes from the three species were present. From the trend of chromosome pairing in all these hybrids it is concluded that there is little structural differentiation between the chromosomes of the three species, no effective isolation barrier to gene-flow between them, and that they are closely related phylogenetically, having possibly evolved from a common progenitor. Taxonomic revision of the two Lolium species is suggested.  相似文献   

14.
Roegneria grandis was hybridized withR. ciliaris var.japonensis (2n = 28, SSYY),Elymus caninus (2n = 28, SSHH), andPseudoroegneria spicata (2n = 28, SSSS). Chromosome pairing was studied in parents and hybrids. It is concluded from this study that: (i)R. grandis is an allotetraploid species and contains the basic genomes S and Y: (ii) a certain degree of homoeology exists between the S and Y genomes of the species studied.  相似文献   

15.
披碱草属(Elymus L.)两个物种之订正   总被引:3,自引:0,他引:3  
披碱草属Elymus L.是小麦族Triticeae Dumort.中最大的属,全世界共有150多个种,广泛分布于 温带地区。我国约有80余种(包括鹅观草属Roegneria C.Koch),是披碱草属的重要分布区和多样性分 化中心。由于披碱草属植物种类繁多、分布广泛、生境多样以及形态变异较为复杂,导致该属在分类上 存在许多问题。同时,由于地域的局限和地区间交流的缺乏,致使同一种披碱草属植物被不同的学者多 次发表及同物异名现象的出现。本文对E.antiquus和E.burchan-buddae这两个曾多次被订名的披碱草 属物种进行了分类订正。  相似文献   

16.
Z W Liu  R R Wang 《Génome》1993,36(1):102-111
To elucidate the genome constitutions of the tetraploid (2n = 4x = 28) species Elytrigia caespitosa, Lophopyrum nodosum, and Pseudoroegneria geniculata ssp. scythica and the hexaploid (2n = 6x = 42) Thinopyrum intermedium, meiotic pairing was studied in these species as well as 10 hybrids. Karyotype analysis with aceto-orcein stained root-tip cells was performed for the four species and the hybrids of T. bessarabicum with E. caespitosa, P. geniculata ssp. scythica, and T. intermedium. Karyotype analysis by Giemsa C-banding was carried out with the three tetraploid species and the two triploid hybrids involving T. bessarabicum. The species behaved as strict allopolyploids. All hybrids were male sterile with few stainable pollen grains. It is concluded from the results that the three tetraploid species have the genome formula JeJeSS and T. intermedium has the formula JeJeJeJeSS. The chromosomes of the Je and S genomes in these species had C-banding patterns differing from each other and from those of the extant diploid species. Based on these findings, the four species investigated should be placed in the same genus or the same section of a genus. However, new combinations are not proposed at this time pending future taxonomic investigation of the genome constitution of Elytrigia repens (L.) Nevski.  相似文献   

17.
获得了硬粒小麦(2n=6x=28、AABB)与中间偃麦草(2n=6x=42、NNE_1E_1E_2E_2)杂种F_1及回交后代材料。统计分析杂种F_1及回交一代PMC MI染色体配对构型,认为中间偃麦草具较远缘的同亲关系(distant homologous)染色体组。由三价体出现频率分析,中间偃麦草不含小麦的B染色体组,建议用NE_1E_2为其染色体组公式。根据回交一代及其自交后代染色体数目,分析了六倍体小偃麦这一人工新物种的形成过程。  相似文献   

18.
Summary Hybrid plants were obtained between Triticum aestivum (2n=6x=42, AABBDD) and Leymus innovatus (2n=4x=28, JJNN) at a frequency varying from 0.4% to 1.2% of the pollinated florets. Improvement of the embryo culture medium resulted in a higher frequency of embryo rescue. Eight of ten hybrids had the expected chromosome number of 35 (ABDJN). Meiotic analysis indicated that there was no homology between the genomes of the two species. Two hybrids had only 28 chromosomes. Comparison of chromosome pairing between the two types of hybrids suggested that Leymus innovatus carries genes that affect chromosome pairing and behavior. The relatively high occurrence of spontaneous doubling in the meiocytes of these hybrids may indicate that backcrossing of the hybrids to wheat should be possible, although frequent chromosome irregularities observed in the meiocytes of the hybrids may decrease the probability of success of this step, which is essential to the process of gene transfer from L. innovatus to wheat.Contrib. no. 366  相似文献   

19.
A 4x potato (+) tomato fusion hybrid (2n = 4x = 48) was successfully backcrossed with a diploid Lycopersicon pennellii (2n = 2x = 24). Genomic in situ hybridization (GISH) on somatic and meiotic chromosomes confirmed that the progenies were triploids (2n = 3x = 36) and possessed three different genomes: potato, tomato, and L. pennellii. Therefore, they have been called trigenomic hybrids. Total genomic probes of both Lycopersicon species were found to hybridize mutually, whereas the potato genome was clearly differentiated. During metaphase I, bivalents were formed predominantly between tomato and L. pennellii chromosomes and the univalents of potato chromosomes were most common. Trivalents in all cases included homoeologous chromosomes of potato, tomato, and L. pennellii. However, the triploids were totally sterile as determined from extensive crossing. On chromosome doubling of triploids by shoot regeneration from callus, hexaploids (2n = 6x = 72) were obtained. Despite exhibiting clear allohexaploid behaviour by forming 36 bivalents at meiosis, these were also completely sterile like their triploid counterparts. In spite of this drawback, the prospects of chromosome pairing between potato L. pennellii and Solanum genomes does open the possibilities for bringing the two genera close.  相似文献   

20.
Somatic hybrids between the wild incongruent species Solanum bulbocastanum (2n = 2x = 24) and S. tuberosum haploids (2n = 2x = 24) have been characterized for their nuclear and cytoplasmic genome composition. Cytologic observations revealed the recovery of 8 (near-)tetraploid and 3 hexaploid somatic hybrids. Multicolor genomic in situ hybridization (GISH) analysis was carried out to study the genomic dosage of the parental species in 5 somatic hybrids with different ploidy. The GISH procedure used was effective in discriminating parental genomes in the hybrids; most chromosomes were unambiguously colored. Two (near-)tetraploid somatic hybrids showed the expected 2:2 cultivated-to-wild genomic dosage; 2 hexaploids revealed a 4:2 cultivated-to-wild genomic dosage, and 1 hexaploid had a 2:4 cultivated-to-wild genomic dosage. Characterization of hybrid cytoplasmic genomes was performed using gene-specific primers that detected polymorphisms between the fusion parents in the intergenic regions. The analysis showed that most of the somatic hybrids inherited the plastidial and mitochondrial DNA of the cultivated parent. A few hybrids, with a rearranged mitochondrial genome (showing fragments derived from both parents), were also identified. These results confirmed the potential of somatic hybridization in producing new variability for genetic studies and breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号