首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Hwang S  Kim M  Ryu S  Jeon B 《PloS one》2011,6(7):e22300
CosR (Campylobacter oxidative stress regulator; Cj0355c) is an OmpR-type response regulator essential for the viability of Campylobacter jejuni, a leading foodborne pathogen causing human gastroenteritis worldwide. Despite importance, the function of CosR remains completely unknown mainly because of cell death caused by its knockout mutation. To overcome this technical limitation, in this study, antisense technology was used to investigate the regulatory function of CosR by modulating the level of CosR expression. Two-dimensional gel electrophoresis (2DGE) was performed to identify the CosR regulon either by suppressing CosR expression with antisense peptide nucleic acid (PNA) or by overexpressing CosR in C. jejuni. According to the results of 2DGE, CosR regulated 32 proteins involved in various cellular processes. Notably, CosR negatively regulated a few key proteins of the oxidative stress response of C. jejuni, such as SodB, Dps, Rrc and LuxS, whereas CosR positively controlled AhpC. Electrophoretic mobility shift assay showed that CosR directly bound to the promoter region of the oxidative stress genes. DNase I footprinting assays identified 21-bp CosR binding sequences in the sodB and ahpC promoters, suggesting CosR specifically recognizes and binds to the regulated genes. Interestingly, the level of CosR protein was significantly reduced by paraquat (a superoxide generator) but not by hydrogen peroxide. Consistent with the overall negative regulation of oxidative stress defense proteins by CosR, the CosR knockdown by antisense rendered C. jejuni more resistant to oxidative stress compared to the wild type. Overall, this study reveals the important role played by the essential response regulator CosR in the oxidative stress defense of C. jejuni.  相似文献   

2.
3.
We have characterized mutants in a novel gene of Bacillus subtilis, cheV, which encodes a protein homologous to both CheW and CheY. A null mutant in cheV is only slightly defective in capillary and tethered cell assays. However, a double mutant lacking both CheV and CheW has a strong tumble bias, does not respond to addition of attractant, and shows essentially no accumulation in capillary assays. Thus, CheV and CheW appear in part to be functionally redundant. A strain lacking CheW and expressing only the CheW domain of CheV is chemotactic, suggesting that the truncated CheV protein retains in vivo function. We speculate that CheV and CheW function together to couple CheA activation to methyl-accepting chemotaxis protein receptor status and that possible CheA-dependent phosphorylation of CheV contributes to adaptation.  相似文献   

4.
5.
6.
Using PCR amplification with degenerate primers, a gene ( tlpA ) from Campylobacter coli encoding a putative 63·0 kDa polypeptide which exhibited significant identity with bacterial methyl-accepting chemotaxis proteins (MCPs) was identified. A mutant containing an inactivated copy of the tlpA gene showed a wild-type chemotactic response to all of the chemo-attractants tested. A DNA probe based on the Highly Conserved Domain (HCD) of TlpA revealed the presence of multiple copies of genes encoding MCP-like proteins in both Camp. coli and Camp. jejuni. The arrangement of restriction sites within, and proximal to, genes with homology to the HCD probe varied among strains, resulting in a high degree of polymorphism. It is demonstrated here that a DNA probe comprising the HCD region of MCP-like proteins can be used, in Southern hybridization-based assays, to provide novel information which allows the discrimination of individual strains of Camp. coli and Camp. jejuni.  相似文献   

7.
The crystal structure of subunit F of vacuole-type ATPase/synthase (prokaryotic V-ATPase) was determined to of 2.2 A resolution. The subunit reveals unexpected structural similarity to the response regulator proteins that include the Escherichia coli chemotaxis response regulator CheY. The structure was successfully placed into the low-resolution EM structure of the prokaryotic holo-V-ATPase at a location indicated by the results of crosslinking experiments. The crystal structure, together with the single-molecule analysis using fluorescence resonance energy transfer, showed that the subunit F exhibits two conformations, a 'retracted' form in the absence and an 'extended' form in the presence of ATP. Our results postulated that the subunit F is a regulatory subunit in the V-ATPase.  相似文献   

8.
Two-component regulatory systems play a major role in the physiological response of bacteria to environmental stimuli. Such systems are composed of a sensor histidine kinase and a response regulator whose ultimate function is to affect the expression of target genes. Response regulator mutants of Campylobacter jejuni strain F38011 were screened for sensitivity to sodium deoxycholate. A mutation in Cj0643, which encodes a response regulator with no obvious cognate histidine kinase, resulted in an absence of growth on plates containing a subinhibitory concentration of sodium deoxcholate (1%, wt/vol). In broth cultures containing 0.05% (wt/vol) sodium deoxycholate, growth of the mutant was significantly inhibited compared to growth of the C. jejuni F38011 wild-type strain. Complementation of the C. jejuni cbrR mutant in trans restored growth in both broth and plate cultures supplemented with sodium deoxycholate. Based on the phenotype displayed by its mutation, we designated the gene corresponding to Cj0643 as cbrR (Campylobacter bile resistance regulator). While the MICs of a variety of bile salts and other detergents for the C. jejuni cbrR mutant were lower, no difference was noted in its sensitivity to antibiotics or osmolarity. Finally, chicken colonization studies demonstrated that the C. jejuni cbrR mutant had a reduced ability to colonize compared to the wild-type strain. These data support previous findings that bile resistance contributes to colonization of chickens and establish that the response regulator, CbrR, modulates resistance to bile salts in C. jejuni.  相似文献   

9.
Mo G  Zhou H  Kawamura T  Dahlquist FW 《Biochemistry》2012,51(18):3786-3798
In the bacterial chemotaxis two-component signaling system, the histidine-containing phosphotransfer domain (the "P1" domain) of CheA receives a phosphoryl group from the catalytic domain (P4) of CheA and transfers it to the cognate response regulator (RR) CheY, which is docked by the P2 domain of CheA. Phosphorylated CheY then diffuses into the cytoplasm and interacts with the FliM moiety of the flagellar motors, thereby modulating the direction of flagellar rotation. Structures of various histidine phosphotransfer domains (HPt) complexed with their cognate RR domains have been reported. Unlike the Escherichia coli chemotaxis system, however, these systems lack the additional domains dedicated to binding to the response regulators, and the interaction of an HPt domain with an RR domain in the presence of such a domain has not been examined on a structural basis. In this study, we used modern nuclear magnetic resonance techniques to construct a model for the interaction of the E. coli CheA P1 domain (HPt) and CheY (RR) in the presence of the CheY-binding domain, P2. Our results indicate that the presence of P2 may lead to a slightly different relative orientation of the HPt and RR domains versus those seen in such complex structures previously reported.  相似文献   

10.
11.
In the Gram-positive soil bacterium Bacillus subtilis, the chemoreceptors are coupled to the central two-component kinase CheA via two proteins, CheW and CheV. CheV is a two-domain protein with an N-terminal CheW-like domain and a C-terminal two-component receiver domain. In this study, we show that CheV is phosphorylated in vitro on a conserved aspartate in the presence of phosphorylated CheA (CheA-P). This reaction is slower compared with the phospho-transfer reaction between CheA-P and one other response regulator of the system, CheB. CheV-P is also highly stable in comparison with CheB-P. Both of these properties are more pronounced in the full-length protein compared with a truncated form composed only of the receiver domain, that is, deletion of the CheW-like domain results in increase in the rate of the phospho-transfer reaction and decrease in stability of the phosphorylated protein. Phosphorylation of CheV is required for adaptation to the addition of the chemoattractant asparagine. In tethered-cell assays, strains expressing an unphosphorylatable point mutant of cheV or a truncated mutant lacking the entire receiver domain are severely impaired in adaptation to the addition of asparagine. Both of these strains, however, show near normal counterclockwise biases, suggesting that in the absence of the attractant the chemoreceptors are efficiently coupled to CheA kinase by the mutant CheV proteins. Inability of the CheW-like domain of CheV to support complete adaptation to the addition of asparagine also suggests that unlike CheW, this domain by itself may lead to the formation of signaling complexes that stay overactive in the presence of the attractant. A possible structural basis for this feature is discussed.  相似文献   

12.
Many bacterial responses to environmental stimuli are mediated by response regulators which coordinately regulate genes involved in particular adaptive responses. Degenerate oligonucleotide primers were used to amplify by the polymerase chain reaction (PCR), fragments from genes encoding eleven novel response regulators. Sequence and phylogenetic analysis revealed that phoB, phoP and creB gene fragments had been amplified from Yersinia enterocolitica and Yersinia pseudotuberculosis, and that a creB sequence had been amplified from Campylobacter jejuni. Four amplified fragments from C. jejuni, Listeria monocytogenes, Mycobacterium tuberculosis and Escherichia coli clearly came from response regulator genes, but were not closely related to any of the known genes. Mutagenesis of the newly identified genes should allow us to determine their function and the genes under their control.  相似文献   

13.
14.
15.
Campylobacter jejuni is the leading cause of bacterial gastroenteritis in humans in developed countries throughout the world. This bacterium frequently promotes a commensal lifestyle in the gastrointestinal tracts of many animals including birds and consumption or handling of poultry meats is a prevalent source of C. jejuni for infection in humans. To understand how the bacterium promotes commensalism, we used signature-tagged transposon mutagenesis and identified 29 mutants representing 22 different genes of C. jejuni strain 81-176 involved in colonization of the chick gastrointestinal tract. Among the determinants identified were two adjacent genes, one encoding a methyl-accepting chemotaxis protein (MCP), presumably required for proper chemotaxis to a specific environmental component, and another gene encoding a putative cytochrome c peroxidase that may function to reduce periplasmic hydrogen peroxide stress during in vivo growth. Deletion of either gene resulted in attenuation for growth throughout the gastrointestinal tract. Further examination of 10 other putative MCPs or MCP-domain containing proteins of C. jejuni revealed one other required for wild-type levels of caecal colonization. This study represents one of the first genetic screens focusing on the bacterial requirements necessary for promoting commensalism in a vertebrate host.  相似文献   

16.
Direction of flagellar rotation in bacterial cell envelopes   总被引:23,自引:16,他引:7       下载免费PDF全文
Cell envelopes with functional flagella, isolated from wild-type strains of Escherichia coli and Salmonella typhimurium by formation of spheroplasts with penicillin and subsequent osmotic lysis, demonstrate counterclockwise (CCW)-biased rotation when energized with an electron donor for respiration, DL-lactate. Since the direction of flagellar rotation in bacteria is central to the expression of chemotaxis, we studied the cause of this bias. Our main observations were: (i) spheroplasts acquired a clockwise (CW) bias if instead of being lysed they were further incubated with penicillin; (ii) repellents temporarily caused CW rotation of tethered bacteria and spheroplasts but not of their derived cell envelopes; (iii) deenergizing CW-rotating cheV bacteria by KCN or arsenate treatment caused CCW bias; (iv) cell envelopes isolated from CW-rotating cheC and cheV mutants retained the CW bias, unlike envelopes isolated from cheB and cheZ mutants, which upon cytoplasmic release lost this bias and acquired CCW bias; and (v) an inwardly directed, artificially induced proton current rotated tethered envelopes in CCW direction, but an outwardly directed current was unable to rotate the envelopes. It is concluded that (i) a cytoplasmic constituent is required for the expression of CW rotation (or repression of CCW rotation) in strains which are not defective in the switch; (ii) in the absence of this cytoplasmic constituent, the motor is not reversible in such strains, and it probably is mechanically constricted so as to permit CCW sense of rotation only; (iii) the requirement of CW rotation for ATP is not at the level of the motor or the switch but at one of the preceding functional steps of the chemotaxis machinery; (iv) the cheC and cheV gene products are associated with the cytoplasmic membrane; and (v) direct interaction between the switch-motor system and the repellent sensors is improbable.  相似文献   

17.
Anand GS  Stock AM 《Biochemistry》2002,41(21):6752-6760
Response regulators are activated to elicit a specific cellular response to an extracellular stimulus via phosphotransfer from a cognate sensor histidine kinase to a specific aspartate residue. Phosphorylation at the conserved aspartate residue modulates the activity of the response regulator. Methylesterase CheB is a two-domain response regulator composed of a regulatory domain and an effector domain with enzymatic activity. CheB functions within the bacterial chemotaxis pathway to control the level of chemoreceptor methylation. In its unphosphorylated state, the regulatory domain inhibits methylesterase activity of the effector domain. Phosphorylation of the regulatory domain leads to an enhancement of methylesterase activity through a relief of inhibition and a stimulatory effect on catalysis. CheB is a useful model protein for understanding the effects of phosphorylation of the regulatory domain on interdomain interactions and stimulation of enzymatic activity of the effector domain. Kinetic analyses of CheB activation indicate that the basis for the nearly 100-fold methylesterase activation upon phosphorylation is due to a change in the catalytic rate constant for the methylesterase reaction. It is also shown that the P2 domain of histidine kinase CheA inhibits the methylesterase activity of CheB and that this inhibition is decreased upon phosphorylation of CheB. Finally, studies of methylesterase catalysis by the free catalytic domain in the presence and absence of the regulatory domain have enabled detection of an association between the two domains in the absence of the linker.  相似文献   

18.
19.
20.
A lacZ-based reporter gene system was used to identify the promoter of the Campylobacter jejuni iron-responsive gene regulator Fur. In other Gram-negative bacteria, the fur promoter is usually located directly upstream of the fur gene and is often autoregulated in response to iron. In this study we demonstrate that expression of the C. jejuni fur gene is controlled from two promoters located in front of the first and second open reading frames upstream of fur. Neither of these promoters was iron-regulated, and the presence of both promoters in front of fur gives higher expression of the lacZ reporter than with either promoter alone. Expression from two distal promoters might be a mechanism for regulating the level of the C. jejuni Fur protein in response to unknown stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号