首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to explore the relationship between unacetylated arginine-rich histones and condensed chromatin structure, the extent of histone acetylation was examined in cultured cell lines derived from three species of deer mice. These species differ considerably in their genomic content of heterochromatin but contain essentially the same euchromatin content. Cells of Peromyscus eremicus, containing 34–36% more constitutive heterochromatin than Peromyscus boylii or Peromyscus crinitus cells were found to contain 28–35% more unacetylated histone H4, 22–29% more unacetylated histone H3, and 18–22% more unacetylated histone H2B. This relationship between unacetylated histones and heterochromatin content was further explored by inducing hyperacetylation of P. eremicus and P. boylii histones through treatment of cells with 15 mM sodium butyrate for 24 h. It was found that the percentages of unacetylated histones H3 and H4 remaining after butyrate treatment were proportional to the amount of constitutive heterochromatin in the genome. These data support the concept that a small core of histones in constitutive heterochromatin is inaccessible to acetylation. It was also found that the acetylated state of isolated histones was sensitive to the method of histone extraction. Thus concern must be given to preparative procedures when studying histone acetylation in order to minimize these acetate losses.  相似文献   

2.
Centromeres of most eukaryotes consist of two distinct chromatin domains: a kinetochore domain, identified by the histone H3 variant, CENP-A, and a heterochromatic domain. How these two domains are separated is unclear. Here, we show that, in Schizosaccharomyces pombe, mutation of the chromatin remodeler RSC induced CENP-ACnp1 misloading at pericentromeric heterochromatin, resulting in the mis-assembly of kinetochore proteins and a defect in chromosome segregation. We find that RSC functions at the kinetochore boundary to prevent CENP-ACnp1 from spreading into neighbouring heterochromatin, where deacetylated histones provide an ideal environment for the spread of CENP-ACnp1. In addition, we show that RSC decompacts the chromatin structure at this boundary, and propose that this RSC-directed chromatin decompaction prevents mis-propagation of CENP-ACnp1 into pericentromeric heterochromatin. Our study provides an insight into how the distribution of distinct chromatin domains is established and maintained.  相似文献   

3.
In order to investigate the relationship between condensed heterochromatin and histone modification by acetylation, phosphorylation and amino acid variation, chromatin from cultured Peromyscus eremicus cells, containing 35% constitutive heterochromatin, was fractionated into heterochromatin-enriched and heterochromatin-depleted fractions. The constitutive heterochromatin content of these fractions was determined from satellite DNA content. The distribution of phosphorylated and acetylated histones and amino acid variants of histone H2A in these chromatin fractions was examined by gel electrophoresis. Fractionation of histones demonstrated that endogenous histone phosphatase activity was high in chromatin fractions and could not be inhibited sufficiently to allow accurate histone phosphorylation measurements. However, sodium butyrate did inhibit deacetylation activity in the fractions, allowing histone acetylation measurements to be made. It was found that the constitutive heterochromatin content of these fractions was proportional to both their unacetylated H4 content and their more-hydrophobic H2A content. These observations support, by direct measurement, earlier experiments (Exp cell res 111 (1978) 373; 125 (1980) 377; 132 (1981) 201) suggesting that constitutive heterochromatin is enriched in unacetylated arginine-rich histones, and in the more hydrophobic variant of histone H2A.  相似文献   

4.
Histone phosphorylation and nuclear structure have been compared in cultured cell lines of two related species of deer mice, Peromyscus crinitus and Peromyscus eremicus, which differ greatly in their heterochromatin contents but which contain essentially the same euchromatin content. Flow microfluorometry measurements indicated that P. eremicus contained 36% more DNA than did P. crinitus, and C-band chromosome staining indicated that the extra DNA of P. eremicus existed as constitutive heterochromatin. Two striking differences in interphase nuclear structure were observed by electron microscopy. Peromyscus crinitus nuclei contained small clumps of heterochromatin and a loose, amorphous nucleolus, while P. eremicus nuclei contained large, dense clumps of heterochromatin and a densely structured, well defined, nucleolonema form of nucleolus. Incorporation of 32PO4 into histones indicated that the steady-state phosphorylation of H1 was identical in P. crinitus and P. eremicus cells. In contrast, the phosphorylation rate of H2a was 58% greater in the highly heterochromatic chromatin of P. eremicus cells than in the lesser heterochromatic chromatin of P. crinitus cells, suggesting an involvement of H2a phosphorylation in heterochromatin structure. It is suggested that the three histone phosphorylations related to cell growth (H1, H2a, and H3) may be associated with different levels of chromatin organization: H1 interphase phosphorylation with some submicroscopic (molecular) level of organization, H2a phosphorylation with a higher level of chromatin organization found in heterochromatin, and H3 and H1 superphosphorylation with the highest level of chromatin organization observed in condensed chromosomes.  相似文献   

5.
6.
Holmgren  P.  Johansson  T.  Lambertsson  A.  Rasmuson  B. 《Chromosoma》1985,93(2):123-131
The amount of histone H1 relative to core histones has been determined in three Drosophila species (D. melanogaster, D. texana and D. virilis) in chromatin from several tissues differing in chromatin structure and genetic activity. Low levels of H1 were found in relatively undifferentiated, early embryos as well as in a line of cultured cells. In late embryos the content of H1 was highest in D. virilis which possesses larger amounts of and a partially more compacted constitutive heterochromatin than the two other species. Polytene chromatin from larval salivary glands showed increased levels of H1 compared with diploid chromatin and the degree of phosphorylation of this histone was relatively low. The degree of phosphorylation of H2A was found to be drastically reduced in polytene as compared with diploid embryonic chromatin, which parallels the extensive underreplication of constitutive heterochromatin. Also, in diploid chromatin a qualitative correlation was observed between the relative amounts of heterochromatin and the levels of H2A phosphorylation. These findings suggest a connection between H2A phosphorylation and heavy compaction of interphase chromatin.  相似文献   

7.
8.
The ChlR1 DNA helicase, encoded by DDX11 gene, which is responsible for Warsaw breakage syndrome (WABS), has a role in sister-chromatid cohesion. In this study, we show that human ChlR1 deficient cells exhibit abnormal heterochromatin organization. While constitutive heterochromatin is discretely localized at perinuclear and perinucleolar regions in control HeLa cells, ChlR1-depleted cells showed dispersed localization of constitutive heterochromatin accompanied by disrupted centromere clustering. Cells isolated from Ddx11−/− embryos also exhibited diffuse localization of centromeres and heterochromatin foci. Similar abnormalities were found in HeLa cells depleted of combinations of HP1α and HP1β. Immunofluorescence and chromatin immunoprecipitation showed a decreased level of HP1α at pericentric regions in ChlR1-depleted cells. Trimethyl-histone H3 at lysine 9 (H3K9-me3) was also modestly decreased at pericentric sequences. The abnormality in pericentric heterochromatin was further supported by decreased DNA methylation within major satellite repeats of Ddx11−/− embryos. Furthermore, micrococcal nuclease (MNase) assay revealed a decreased chromatin density at the telomeres. These data suggest that in addition to a role in sister-chromatid cohesion, ChlR1 is also involved in the proper formation of heterochromatin, which in turn contributes to global nuclear organization and pleiotropic effects.  相似文献   

9.
The histone H3 variant CENP-A assembles into chromatin exclusively at centromeres. The process of CENP-A chromatin assembly is epigenetically regulated. Fission yeast centromeres are composed of a central kinetochore domain on which CENP-A chromatin is assembled, and this is flanked by heterochromatin. Marker genes are silenced when placed within kinetochore or heterochromatin domains. It is not known if fission yeast CENP-ACnp1 chromatin is confined to specific sequences or whether histone H3 is actively excluded. Here, we show that fission yeast CENP-ACnp1 can assemble on noncentromeric DNA when it is inserted within the central kinetochore domain, suggesting that in fission yeast CENP-ACnp1 chromatin assembly is driven by the context of a sequence rather than the underlying DNA sequence itself. Silencing in the central domain is correlated with the amount of CENP-ACnp1 associated with the marker gene and is also affected by the relative level of histone H3. Our analyses indicate that kinetochore integrity is dependent on maintaining the normal ratio of H3 and H4. Excess H3 competes with CENP-ACnp1 for assembly into central domain chromatin, resulting in less CENP-ACnp1 and other kinetochore proteins at centromeres causing defective kinetochore function, which is manifest as aberrant mitotic chromosome segregation. Alterations in the levels of H3 relative to H4 and CENP-ACnp1 influence the extent of DNA at centromeres that is packaged in CENP-ACnp1 chromatin and the composition of this chromatin. Thus, CENP-ACnp1 chromatin assembly in fission yeast exhibits plasticity with respect to the underlying sequences and is sensitive to the levels of CENP-ACnp1 and other core histones.  相似文献   

10.
11.
12.
The X-linked Mecp2 is a known interpreter of epigenetic information and mutated in Rett syndrome, a complex neurological disease. MeCP2 recruits HDAC complexes to chromatin thereby modulating gene expression and, importantly regulates higher order heterochromatin structure. To address the effects of MeCP2 deficiency on heterochromatin organization during neural differentiation, we developed a versatile model for stem cell in vitro differentiation. Therefore, we modified murine Mecp2 deficient (Mecp2 −/y) embryonic stem cells to generate cells exhibiting green fluorescent protein expression upon neural differentiation. Subsequently, we quantitatively analyzed heterochromatin organization during neural differentiation in wild type and in Mecp2 deficient cells. We found that MeCP2 protein levels increase significantly during neural differentiation and accumulate at constitutive heterochromatin. Statistical analysis of Mecp2 wild type neurons revealed a significant clustering of heterochromatin per nuclei with progressing differentiation. In contrast we found Mecp2 deficient neurons and astroglia cells to be significantly impaired in heterochromatin reorganization. Our results (i) introduce a new and manageable cellular model to study the molecular effects of Mecp2 deficiency, and (ii) support the view of MeCP2 as a central protein in heterochromatin architecture in maturating cells, possibly involved in stabilizing their differentiated state.  相似文献   

13.
DNA methylation has been implicated in chromatin condensation and nuclear organization, especially at sites of constitutive heterochromatin. How this is mediated has not been clear. In this study, using mutant mouse embryonic stem cells completely lacking in DNA methylation, we show that DNA methylation affects nuclear organization and nucleosome structure but not chromatin compaction. In the absence of DNA methylation, there is increased nuclear clustering of pericentric heterochromatin and extensive changes in primary chromatin structure. Global levels of histone H3 methylation and acetylation are altered, and there is a decrease in the mobility of linker histones. However, the compaction of both bulk chromatin and heterochromatin, as assayed by nuclease digestion and sucrose gradient sedimentation, is unaltered by the loss of DNA methylation. This study shows how the complete loss of a major epigenetic mark can have an impact on unexpected levels of chromatin structure and nuclear organization and provides evidence for a novel link between DNA methylation and linker histones in the regulation of chromatin structure.  相似文献   

14.
15.
This article discusses the advances made in epigenetic research using the model organism fission yeast Schizosaccharomyces pombe. S. pombe has been used for epigenetic research since the discovery of position effect variegation (PEV). This is a phenomenon in which a transgene inserted within heterochromatin is variably expressed, but can be stably inherited in subsequent cell generations. PEV occurs at centromeres, telomeres, ribosomal DNA (rDNA) loci, and mating-type regions of S. pombe chromosomes. Heterochromatin assembly in these regions requires enzymes that modify histones and the RNA interference (RNAi) machinery. One of the key histone-modifying enzymes is the lysine methyltransferase Clr4, which methylates histone H3 on lysine 9 (H3K9), a classic hallmark of heterochromatin. The kinetochore is assembled on specialized chromatin in which histone H3 is replaced by the variant CENP-A. Studies in fission yeast have contributed to our understanding of the establishment and maintenance of CENP-A chromatin and the epigenetic activation and inactivation of centromeres.  相似文献   

16.
To obtain an estimate of the rate of RNA synthesis by the heterochromatic sex chromatin body, human female fibroblasts were labeled with uridine-5-H3 and radioautographed. The number of grains over the sex chromatin body was compared with the number of grains over a comparable area of euchromatin. The ratio was 0.37. When corrected for the higher content of DNA per unit area in heterochromatin, the maximum rate of RNA synthesis by the DNA of the sex chromatin body was approximately 18% of the rate of RNA synthesis by a comparable amount of euchromatin DNA. The rate of RNA synthesis by the sex chromatin body did not increase significantly with partial despiralization of this chromatin at prophase.  相似文献   

17.
18.
19.
20.
Post-translational modifications (PTMs) of core histones are important epigenetic determinants that correlate with functional chromatin states. However, despite multiple linker histone H1s PTMs have been identified, little is known about their genomic distribution and contribution to the epigenetic regulation of chromatin. Here, we address this question in Drosophila that encodes a single somatic linker histone, dH1. We previously reported that dH1 is dimethylated at K27 (dH1K27me2). Here, we show that dH1K27me2 is a major PTM of Drosophila heterochromatin. At mitosis, dH1K27me2 accumulates at pericentromeric heterochromatin, while, in interphase, it is also detected at intercalary heterochromatin. ChIPseq experiments show that >98% of dH1K27me2 enriched regions map to heterochromatic repetitive DNA elements, including transposable elements, simple DNA repeats and satellite DNAs. Moreover, expression of a mutated dH1K27A form, which impairs dH1K27me2, alters heterochromatin organization, upregulates expression of heterochromatic transposable elements and results in the accumulation of RNA:DNA hybrids (R-loops) in heterochromatin, without affecting H3K9 methylation and HP1a binding. The pattern of dH1K27me2 is H3K9 methylation independent, as it is equally detected in flies carrying a H3K9R mutation, and is not affected by depletion of Su(var)3–9, HP1a or Su(var)4–20. Altogether these results suggest that dH1K27me2 contributes to heterochromatin organization independently of H3K9 methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号