首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Starvation for histidine prevented tumbling in Salmonella typhimurium hisF auxotrophs, including constantly tumbling strains with an additional mutation in cheB or cheZ. However, histidine-starved cheZs hisF strains were not defective in flagellar function or the tumbling mechanism since freshly starved auxotrophs tumbled in response to a variety of repellents. Tumbling in histidine-starved S. typhimurium could be restored in 13 s by addition of adenine or in 4 min by addition of histidine. Chloramphenicol did not prevent restoration of tumbling by these substances. Assays of adenosine 5'-triphosphate were performed based upon previous demonstration of adenine depletion in hisF auxotrophs starved for histidine. The adenosine 5'-triphosphate concentration dropped rapidly during the course of starvation, falling to less than 5% of the initial level as the cells ceased tumbling entirely. The change to smooth motility was prevented by 2-thiazolealanine, which inhibits phosphoribosyltransferase, thereby preventing adenine depletion during histidine starvation. These results suggest that an adenosine 5'-triphosphate deficiency was responsible for the change in tumbling frequency.  相似文献   

2.
Protein synthesis was studied comparatively in a wild-type strain of Salmonella typhimurium and in hisT mutant cells defective in the pseudouridylation of transfer RNA. From a quantitative point of view, no significant differences between the two types of strain was observed when measuring the rate of protein synthesis during either exponential growth or starvation for histidine. In contrast, the qualitative analysis of proteins by two-dimensional gel electrophoresis showed that histidine-starved hisT cells mistranslate the genetic program at a higher frequency than exponentially growing hisT cells or either starved or unstarved hisT+ cells.  相似文献   

3.
In Escherichia coli and Salmonella typhimurium, ATP is required for chemotaxis and for a normal probability of clockwise rotation of the flagellar motors, in addition to the requirement for S-adenosylmethionine (J. Shioi, R. J. Galloway, M. Niwano, R. E. Chinnock, and B. L. Taylor, J. Biol. Chem. 257:7969-7975, 1982). The site of the ATP requirement was investigated. The times required for S. typhimurium ST23 (hisF) to adapt to a step increase in serine, phenol, or benzoate were similar in cells depleted of ATP and in cells with normal levels of ATP. This established that ATP was not required for the chemotactic signal to cross the inner membrane or for adaptation to the transmembrane signal to occur. Depletion of ATP did not affect the probability of clockwise rotation in E. coli cheYZ scy strains that were defective in the cheY and cheZ genes and had a partially compensating mutation in the motor switch. Strain HCB326 (cheAWRBYZ tar tap tsr trg::Tn10), which was deficient in all chemotaxis components except the switch and motor, was transformed with the pCK63 plasmid (ptac-cheY+). Induction of cheY in the transformant increased the frequency of clockwise rotation, but except at the highest levels of CheY overproduction, clockwise rotation was abolished by depleting ATP. It is proposed that the CheY protein is normally in an inactive form and that ATP is required for formation of an active CheY* protein that binds to the switch on the flagellar motors and initiates clockwise rotation. Depletion of ATP partially inhibits feedback regulation of the cheB product, protein methylesterase, but this may reflect a second site of ATP action in chemotaxis.  相似文献   

4.
Three methods of ATP depletion in Salmonella typhimurium were compared. ATP concentrations were lowest after arsenate treatment. Arsenate or alpha-methylglucoside-plus-azide treatment nonspecifically lowered all nucleotide triphosphate levels. Histidine starvation in a hisF mutant was relatively specific for ATP depletion and therefore has potential in distinguishing ATP-dependent processes from processes dependent on other nucleotides.  相似文献   

5.
The effect of Ca2+ loading, induced by the ionophore A23187, on methyl esterification of membrane proteins (i.e. bands 2.1, 3, 4.1 and 4.5) has been investigated in intact human erythrocytes. When the cells were incubated with L-[methyl-3H]methionine, 40 microM CaCl2 and 10 microM A23187 induce a 50% inhibition of membrane protein methyl esterification. This effect is selectively due to the increased intracellular Ca2+ concentration, as it is antagonized by 10 mM EGTA, and other divalent cations such as Mn2+ do not exert any inhibition. In order to clarify the mechanism(s) of the reported inhibition, the various events involved in the methyl esterification process in vivo were analyzed. L-Methionine uptake as well as protein methylase II activity are not directly affected by altered intracellular Ca2+ concentrations. Conversely in the Ca2+-loaded erythrocytes the conversion of [3H]methionine into [3H]AdoMet, catalyzed by AdoMet synthetase, decreases up to 25%. When the undialyzed erythrocyte cytosolic fraction is assayed in vitro for AdoMet synthetase the activity of the enzyme from the CaCl2/A23187-treated erythrocytes is significantly lower than the control, up to 5 mM ATP. This result suggests that in the Ca2+-loaded erythrocytes the ATP intracellular concentration is significantly lowered. The direct evaluation of ATP intracellular concentration, by HPLC, confirms a significant drop of ATP level, as a consequence of the Ca2+ loading. The removal of Ca2+ from the cells quantitatively restores both the AdoMet synthesis and the methyl esterification levels. The possible role of altered ATP intracellular concentrations as a regulatory factor in the AdoMet-dependent reactions as well as in post-translational protein methylation related to the ageing process is also discussed.  相似文献   

6.
Metabolic changes in response to histidine starvation were observed in histidine-auxotrophic Escherichia coli using a capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS)-based metabolomics technique. Prior to the analysis, we prepared an E. coli metabolome list of 727 metabolites reported in the literature. An improved method for metabolite extraction was developed, which resulted in higher extraction efficiency in phosphate-rich metabolites, e.g., ATP and GTP. Based on the results, 375 charged, hydrophilic intermediates in primary metabolisms were analysed simultaneously, providing quantitative data of 198 metabolites. We confirmed that the intracellular levels of intermediates in histidine biosynthesis are rapidly accumulated in response to a drop in histidine level under histidine-starved conditions. Simultaneously, disciplined responses were observed in the glycolysis, tricarboxylic acid cycle, and amino acid and nucleotide biosynthesis pathways as regulated by amino acid starvation.  相似文献   

7.
Effect of methionine on chemotaxis by Bacillus subtilis.   总被引:5,自引:4,他引:1       下载免费PDF全文
Bacillus subtilis, like Escherichia coli and Salmonella typhimurium, carries out chemotaxis by modulating the relative frequency of smooth swimming and tumbling. Like these enteric bacteria, methionine auxotrophs starved for methionine show an abnormally long-period of smooth swimming after addition of attractant. This "hypersensitive" state requires an hour of starvation for its genesis, which can be hastened by including alanine, a strong attractant, in starvation medium. Susceptibility to repellent, which causes transient tumbling when added, if anything, increases slightly by starvation for methionine. The results are interpreted by postulating the existence of a methionine-derived structure that hastens recovery of attractant-stimulated bacteria back to normal.  相似文献   

8.
The relationships between the level of tumbling, tumble frequency, and chemotactic ability were tested by constructing two Escherichia coli strains with the same signaling apparatus but with different adapted levels of tumbling, above and below the level of wild-type E. coli. This was achieved by introducing two different aspartate receptor genes into E. coli: a wild-type (wt-tars) and a mutant (m-tars) Salmonella typhimurium receptor gene. These cells were compared with each other and with wild-type E. coli (containing the wild-type E. coli aspartate receptor gene, wt-tare). It was found that in spite of the differences in the adapted levels of tumbling, the three strains had essentially equal response times and chemotactic ability toward aspartate. This shows that the absolute level of the tumbling can be varied without impairing chemotaxis if the signal processing system is normal. It also appears that a largely smooth-swimming mutant may undergo chemotaxis by increasing tumbling frequency in negative gradients.  相似文献   

9.
S-Adenosyl-L-methionine (AdoMet) has been found to bind specifically to the plasma membrane of promyelocytic leukemia cells, HL-60. The Kd for AdoMet is 4.2.10(-6) M and the Bmax is 4.0.10(-12) mol/10(7) HL-60 cells. The binding is not related to the adenosine receptor since neither adenosine, ADP, nor ATP affect the ligand-receptor reaction. When HL-60 cells were incubated with physiological concentrations of [methyl-3H]AdoMet (20 microM) at 36 degrees C, AdoMet did not equilibrate with the intracellular pool, nor were any [3H]methyl groups incorporated into nucleic acids or proteins. In contrast, significant amounts of [3H]methyl groups were incorporated into membrane phospholipids. When cells were incubated with 20 microM [methyl-3H]AdoMet, [3H]methyl groups were transferred to phosphatidylethanolamine, -monomethylethanolamine, and -dimethylethanolamine yielding phosphatidylcholine. However, the rate of methyl transfer with AdoMet was only 22% of that observed when cells were incubated with a comparable amount of [methyl-3H]methionine. Both the binding of AdoMet and the methylation of phospholipids were inhibited by exogenous S-adenosyl-L-homocysteine. Therefore, the binding may be linked to a phospholipid methyltransferase.  相似文献   

10.
The specific activity of the gamma-32P position of ATP was measured in various tissue preparations by two methods. One employed HPLC and the enzymatic conversion of ATP to glucose 6-phosphate and ADP. The other was based on the phosphorylation of histone by catalytic subunit of cAMP-dependent protein kinase (Hawkins, P.T., Michell, R.H. and Kirk, C.J. (1983) Biochem. J. 210, 717-720). The HPLC method also allowed the incorporation of 32P into the (alpha + beta)-positions of ATP to be determined. In rat epididymal fat-pad pieces and fat-cell preparations the specific activity of [gamma-32P]ATP attained a steady-state value after 1-2 h incubation in medium containing 0.2 mM [32P]phosphate. Addition of insulin or the beta-agonist isoprenaline increased this value by 5-10% within 15 min. Under these conditions the steady-state specific activity of [gamma-32P]ATP was 30-40% of the initial specific activity of the medium [32P]phosphate. However, if allowance was made for the change in medium phosphate specific activity during incubations the equilibration of the gamma-phosphate position of ATP with medium phosphate was greater than 80% in both preparations. The change in medium phosphate specific activity was a combination of the expected equilibration of [32P]phosphate with exchangeable intracellular phosphate pools plus the net release of substantial amounts of tissue phosphate. At external phosphate concentrations of less than 0.6 mM the loss of tissue phosphate to the medium was the major factor in the change in medium phosphate specific activity. It is concluded that little advantage is gained in employing external phosphate concentrations of less than 0.6 mM in experiments concerned with the incorporation of phosphate into proteins and other intracellular constituents. Indeed, a low external phosphate concentration may cause depletion of important intracellular phosphorus-containing components.  相似文献   

11.
Defects in phosphotransferase chemotaxis in cya and cpd mutants previously cited as evidence of a cyclic GMP or cyclic AMP intermediate in signal transduction were not reproduced in a study of chemotaxis in Escherichia coli and Salmonella typhimurium. In cya mutants, which lack adenylate cyclase, the addition of cyclic AMP was required for synthesis of proteins that were necessary for phosphotransferase transport and chemotaxis. However, the induced cells retained normal phosphotransferase chemotaxis after cyclic AMP was removed. Phosphotransferase chemotaxis was normal in a cpd mutant of S. typhimurium that has elevated levels of cyclic GMP and cyclic AMP. S. typhimurium crr mutants are deficient in enzyme III glucose, which is a component of the glucose transport system, and a regulator of adenylate cyclase. After preincubation with cyclic AMP, the crr mutants were deficient in enzyme II glucose-mediated transport and chemotaxis, but other chemotactic responses were normal. It is concluded that cyclic GMP does not determine the frequency of tumbling and is probably not a component of the transduction pathway. The only known role of cyclic AMP is in the synthesis of some proteins that are subject to catabolite repression.  相似文献   

12.
The formation of the five tryptophan biosynthetic enzymes of Neurospora crassa was shown to be derepressed in histidine-starved cells. This histidine-mediated derepression was not due to a lowered intracellular concentration of tryptophan in these cells. Furthermore, histidine-mediated derepression of tryptophan enzymes was found to be coordinate and not subject to reversal by tryptophan of either exogenous or biosynthetic origin. The synthesis of tryptophan enzymes also was found to be coordinate in cells which were not histidine-starved. Although histidine is clearly involved in regulating the synthesis of tryptophan enzymes, it did not prevent either tryptophan-mediated derepression of tryptophan enzymes or indole-3-glycerol phosphate-mediated derepression of tryptophan synthetase.  相似文献   

13.
The elution profiles of Asp-tRNA from unstarved and starved cultures of a relaxed-control (Rel-) strain of Escherichia coli were compared by reversed-phase chromatography. Methionine starvation results in the appearance of several additional species of Asp-tRNA which are not observed with starvation for leucine or histidine. By the criterion of cyanogen bromide-effected shifts in chromatographic elution position, a large portion of the tRNAAsp synthesized in methionine-starved cells lacks the normal Q nucleoside. By the same criterion, virtually all of the tRNAAsp from unstarved, leucine-starved, and histidine-starved cells contain Q. We conclude that methionine starvation prevents the formation of the norma Q nucleoside in Rel- E. coli.  相似文献   

14.
Freshly isolated human erythrocytes contain S-adenosyl-L-methionine (AdoMet) at a concentration of about 3.5 mumol/l cells. When such cells are incubated in a medium containing 30 microM L-methionine, 18 mM D-glucose and 118 mM sodium phosphate (pH 7.4), intracellular AdoMet levels continuously decrease to a value of about 0.1 microM after 24 h. This occurs in spite of the fact that the cellular concentrations of the substrates for the AdoMet synthetase reaction, ATP and L-methionine, remain relatively constant. In a search for incubation conditions that lead to stable levels of AdoMet in incubated cells, we have developed a sodium-Hepes-buffered medium which includes 1 mM adenine and a stoichiometric excess of MgCl2 over its ligand, phosphate. The inclusion of magnesium ion (and a reduction in phosphate) appears to increase intracellular free Mg2+, which is required for full activity of the erythrocyte AdoMet synthetase. Even in the presence of MgCl2, however, the AdoMet pool level can drop 4-6-fold within the first 2 h of incubation. We present evidence that suggests that this initial fall in the cellular AdoMet level may be due to the activation of AdoMet-dependent protein carboxyl methyltransferase, an enzyme which accounts for a large fraction of the total cellular AdoMet utilization. Adenine, or related compounds in the medium may prevent this activation, although the mechanism of this action is not clear at present.  相似文献   

15.
Effect of arsenate on chemotactic behavior of Escherichia coli.   总被引:5,自引:4,他引:1       下载免费PDF全文
Escherichia coli cells treated with arsenate cannot tumble. The relationship between cellular adenosine 5'-triphosphate (ATP) level and the ability to tumble has been studied. (i) Cells incubated with arsenate completely lost their tumbling ability, and the cellular ATP level was decreased to less than 0.3 nmol/mg of protein. (ii) Incubation with 10 mM arsenate-1 mM phosphate reduced the cellular ATP level to less than 0.25 nmol/mg of protein. However, the cells were still able to tumble. (iii) Tumbling of the arsenate-treated cells was completely recovered after addition of a slight amount of phosphate, although the ATP level was still as low as 0.2 nmol/mg of protein. (iv) The cellular ATP level of an arsenate-treated uncA mutant (Ca2+,Mg2+-adenosine triphosphatase defective) was lower than 0.1 nmol/mg of protein even after the addition of 5 5 mM phosphate. However, tumbling ability was almost completely restored upon addition of the phosphate.  相似文献   

16.
Growth of Halobacterium halobium under illumination with limiting aeration induces bacteriorhodopsin formation and renders the cells capable of photophosphorylation. Cells depleted of endogenous reserves by a starvation treatment were used to investigate the means by which energy is coupled to the active transport of [14C]proline, -leucine, and -histidine. Proline was readily accumulated by irradiated cells under anaerobiosis even when the photophosphorylation was abolished by the adenosine triphosphatase inhibitor N,N'-dicyclohexylcarbodimiide (DCCD). The uptake of proline in the dark was limited except when the cells were allowed to accumulate adenosine 5'-triphosphate (ATP) by prior light exposure or by the oxidation of glycerol. DCCD inhibited this dark uptake. These findings essentially support Mitchell's chemiosmotic theory of active transport. The driving force is apparently the proton-motive force developed when protons are extruded from irradiated bacteriorhodopsin or by the dydrolysis of ATP by membrane adenosine triphosphatase. Carbonylcyanide m-chlorophenylhydrazone (CCCP), a proton permeant known to abolish membrane potential, was a strong inhibitor of proline uptake. Leucine transport was also apparently driven by proton-motive force, although its kinetic properties differed from the proline system. Histidine transport is apparently not a chemiosmotic system. Dark- or light-exposed cells show comparable initial rats of histidine uptake, and these processes were only partially inhibited by DCCD or CCCP. The histidine system apparently does not utilize ATP per se since comparable rates of uptake were exhibited by cells of differing intracellular ATP levels. Irradiated cells did effect a greater total accumulation of histidine than dark-exposed cells. These findings suggest that ATP is needed for sustained transport.  相似文献   

17.
We have studied the effects of changes of intracellular ATP concentration ([ATP]i) on the activity of ATP-sensitive K-channels (IK(ATP] and of Na,K-ATPase in intact cells of the insulin-secreting cell-line HIT-T15. Pre-exposure of HIT beta-cells to oligomycin caused a dose-dependent reduction in [ATP]i. Marked activation of IK(ATP) activity was found when ATP was lowered below 3 mM. Na,K-ATPase was progressively inhibited as ATP was lowered to 1.5 mM. These data demonstrate that changes in intracellular ATP in the millimolar range markedly influence the activity of two beta-cell membrane proteins having affinities for ATP in the micromolar range. This suggests that submembrane [ATP] may be considerably below the measured bulk cytosolic concentration. The findings also support the proposed role of intracellular ATP in mediating effects of changes in glucose concentration on the activity of beta-cell IK(ATP) and insulin secretion.  相似文献   

18.
Pancreatic beta cells act as glucose sensors, in which intracellular ATP ([ATP]i) are altered with glucose concentration change. The characterization of voltage-gated sodium channels under different [ATP]i remains unclear. Here, we demonstrated that increasing [ATP]i within a certain range of concentrations (2–8 mM) significantly enhanced the voltage-gated sodium channel currents, compared with 2 mM cytosolic ATP. This enhancement was attenuated by even high intracellular ATP (12 mM). Furthermore, elevated ATP modulated the sodium channel kinetics in a dose-dependent manner. Increased [ATP]i shifted both the current–voltage curve and the voltage-dependent inactivation curve of sodium channel to the right. Finally, the sodium channel recovery from inactivation was significantly faster when the intracellular ATP level was increased, especially in 8 mM [ATP]i, which is an attainable concentration by the high glucose stimulation. In summary, our data suggested that elevated cytosolic ATP enhanced the activity of Na+ channels, which may play essential roles in modulating β cell excitability and insulin release when blood glucose concentration increases.  相似文献   

19.
A Borczuk  A Stock    J Stock 《Journal of bacteriology》1987,169(7):3295-3300
We previously showed that a mutant strain of Salmonella typhimurium completely deficient in both the chemoreceptor methylating (CheR) and demethylating (CheB) enzymes can still exhibit chemotaxis to aspartate and other attractants (J. Stock, A. Borczuk, F. Chiou, and J. E. B. Burchenal, Proc. Natl. Acad. Sci. USA 82:8364-8368, 1985). We used this cheR cheB mutant to examine the possibility of an additional requirement for S-adenosylmethionine in chemotaxis besides its role in chemoreceptor methylation. A metE mutation was transduced into a cheR cheB double mutant, and the cells were starved for methionine. Despite the fact that intracellular S-adenosylmethionine dropped from approximately 100 microM to less than 0.2 microM, chemotaxis was largely unaffected. In contrast, a corresponding cheR+ cheB+ metE mutant completely lost its chemotaxis ability after being starved for methionine. We conclude from this observation that the primary requirement for S-adenosylmethionine during bacterial chemotaxis is in the methylation of receptor proteins.  相似文献   

20.
S-Adenosylmethionine (AdoMet) plays a myriad of roles in cellular metabolism. One of the many roles of AdoMet in Escherichia coli and Salmonella typhimurium is as a corepressor of genes encoding enzymes of methionine biosynthesis. To investigate the metabolic effects of large reductions in intracellular AdoMet concentrations in growing cells, we constructed and examined mutants of E. coli which are conditionally defective in AdoMet synthesis. Temperature-sensitive mutants in metK, the structural gene for the S-adenosylmethionine synthetase (AdoMet synthetase) expressed in minimal medium, were constructed by in vitro mutagenesis of a plasmid-borne copy of metK. By homologous recombination, the chromosomal copy was replaced with the mutated metK gene. Both heat- and cold-sensitive mutants were examined. At the nonpermissive temperature, two such mutants had 200-fold-reduced intracellular AdoMet levels and required either methionine or vitamin B12 for growth. In the presence of methionine or vitamin B12, the mutants grew at normal rates even though the AdoMet levels remained 0.5% of wild type. A third mutant when placed at nonpermissive temperature had less than 0.2% of the normal AdoMet level and did not grow on minimal medium even in the presence of methionine or vitamin B12. All of these mutants grew normally on yeast-extract-based medium in which an alternate form of S-adenosylmethionine synthetase was expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号