首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
During differentiation of 3T3 preadipocytes into adipocytes the activity of pyruvate carboxylase, a key lipogenic enzyme, rises about 20-fold. This increase of enzymatic activity is correlated with a comparable rise in the rate of incorporation of [35S]methionine into immunoadsorbable pyruvate carboxylase. Polyadenylated RNA, isolated from differentiated 3T3 adipocytes, directs the synthesis of pyruvate carboxylase in a messenger-dependent reticulocyte lysate translation system at a 18-fold greater rate than that isolated from undifferentiated cells. Thus, it appears that the differentiation-induced rise in the cellular level of pyruvate carboxylase results from an increased rate of carboxylase synthesis due to a rise in the level of translatable carboxylase messenger RNA.  相似文献   

2.
1. Exposure to [3H]biotin during the differentiation of 3T3-L1 cells to adipocytes selectively labelled pyruvate carboxylase (EC 6.4.1.1). A subsequent incubation of labelled cells permitted the measurement of the degradation rate constant of this mitochondrial enzyme. 2. In medium without serum, pyruvate carboxylase was degraded with a half-life of 64 h, considerably longer than that found for average cell protein. The long half-life is commensurate with the enzyme being catabolized when whole mitochondria are destroyed. 3. The breakdown of pyruvate carboxylase was inhibited to a greater extent than the breakdown of total cell protein by insulin, NH4Cl and inhibitors of lysosomal proteinases, suggesting that the enzyme is degraded by the autophagic lysosomal system of the cell. 4. The above evidence implies that whole mitochondria are degraded in lysosomes, a conclusion that agrees with earlier electron-microscopic evidence showing mitochondria within autophagic vacuoles. 5. A second degradative pathway must be invoked to account for the breakdown of mitochondrial proteins of short half-life.  相似文献   

3.
The 3T3-L1 preadipocytes treated with insulin, dexamethasone and 3-methyl-1-isobutylxanthine (IBMX) two days before reaching monolayer undergo differentiation into adipocytes. Cell lysates were prepared from these cells under various conditions and analyzed by SDS-PAGE and transblot. Peroxidase-conjugated avidin used to detect endogenous proteins interacted strongly with a protein with an estimated molecular weight of 120 kDa, corresponding to pyruvate carboxylase, in the differentiated 3T3-L1 cells. On the other hand, this protein was not detected in undifferentiated 3T3-L1 cells.  相似文献   

4.
An oligonucleotide probe specific for the amino acid sequence at the biotin site in pyruvate carboxylase was used to screen a human liver cDNA library. Nine cDNA clones were isolated and three proved to be pyruvate carboxylase clones based on nucleotide sequencing and Northern blotting. The biotin site amino acid sequence of human pyruvate carboxylase agreed perfectly with that of the sheep enzyme in 14 consecutive positions. The highly conserved amino acid sequence, Ala-Met-Lys-Met, found at the biotin site in most biotin-containing carboxylases was also present in human pyruvate carboxylase. The termination codon was located 35 residues 3' to the lysine residue at which the biotin is attached. Therefore, the biotin cofactor is covalently linked near the carboxyl-terminal end of the carboxylase protein. These data are consistent with that observed for other biotin-containing carboxylases and strongly suggests that the genes encoding the biotin-containing carboxylases may have evolved from a common ancestral gene. Northern blotting of mRNA isolated from human, baboon, and rat liver demonstrated that the pyruvate carboxylase mRNA was 4.2 kilobase pairs in length in all species examined. Southern blot analysis of genomic DNA isolated from human-Chinese hamster somatic cell hybrids localized the pyruvate carboxylase gene on the long arm of human chromosome 11. The human cDNA was also used to quantitate pyruvate carboxylase mRNA levels in a differentiating mouse preadipocyte cell line. These data demonstrated that pyruvate carboxylase mRNA content increased 23-fold in 7 days after the onset of differentiation.  相似文献   

5.
Differentiation of confluent 3T3-L1 preadipocytes to adipocytes in the presence of dexamethasone and 1-methyl-3-isobutylxanthine for 7 days resulted in a 4-fold increase in the incorporation of acetoacetate-carbon into fatty acids and in the activity of 3-oxoacid CoA-transferase, which catalyzes the first committed step in the conversion of acetoacetate to acetoacetyl-CoA. The increase in enzyme activity was due to an increase in the cellular content of the enzyme, as determined by immunoprecipitation of 3-oxoacid CoA-transferase from 3T3-L1 preadipocytes and adipocytes with rabbit antiserum specific for the rat brain enzyme. The 4-fold increase in enzyme activity was accompanied by a 2.7-fold increase in the average relative rate of synthesis of 3-oxoacid CoA-transferase (between Days 4 and 7). Additionally, the half-life of the enzyme increased 1.9-fold relative to the half-life of total protein, indicating that changes in both synthesis and degradation of 3-oxoacid CoA-transferase are responsible for alterations in its activity. Previous studies on the turnover of other enzymes that are induced during differentiation of 3T3-L1 cells have assigned changes in enzyme synthesis as the primary or sole mechanism for changes in enzyme activity. This report provides the first documentation that both enzyme synthesis and degradation play a role in regulating the enzyme activity of an enzyme during differentiation of 3T3-L1 cells.  相似文献   

6.
Regulation of the activity and synthesis of malic enzyme in 3T3-L1 cells   总被引:1,自引:0,他引:1  
Malic enzyme activity in differentiated 3T3-L1 cells was about 20-fold greater than activity in undifferentiated cells. A new steady-state level was achieved about 8 days after initiating differentiation of confluent cultures with a 2-day exposure to dexamethasone, isobutylmethylxanthine, and insulin. This increase in enzyme activity resulted from an increase in the mass of malic enzyme as detected by immunotitration of enzyme activity with goat antiserum directed against purified rat liver malic enzyme. Malic enzyme synthesis was undetectable in undifferentiated cells and increased to about 0.2% of soluble protein in differentiated cells, suggesting that the increase in enzyme mass was due primarily to an increase in enzyme synthesis. Thyroid hormone, a potent stimulator of malic enzyme activity in hepatocytes in culture and in liver and adipose tissue in intact animals, decreased or increased malic enzyme activity in differentiating 3T3-L1 cells by about 40% when it was removed or added to the medium, respectively. Insulin, another physiologically important regulator of malic enzyme activity in vivo, had no effect on the initial rate of accumulation of malic enzyme activity in the differentiating cells and caused a 30 to 40% decrease in the final level of enzyme activity in the fully differentiated cells. Cyclic AMP, a potent inhibitor of malic enzyme synthesis in hepatocytes in culture, inhibited this process in 3T3-L1 cells by 30%. Malic enzyme is like several other enzymes in that the large increase in its concentration which accompanies differentiation of 3T3-L1 cells is due to increased synthesis of enzyme protein. However, the hormonal modulation of malic enzyme characteristic of liver and adipose tissue in intact animals does not appear to occur in differentiated 3T3-L1 cells, suggesting that differentiated 3T3-L1 cells may not be an appropriate model system in which to study the hormonal modulation of malic enzyme that occurs in liver and adipose tissue of intact animals.  相似文献   

7.
A quantitative assay has been developed to measure holocarboxylase synthetase activity in cellular extracts. This assay was based on measuring the incorporation of [3H]biotin of high specific activity (4.3 Ci/mmol) into purified rat liver apopyruvate carboxylase. With this assay, holocarboxylase synthetase in 3T3-L1 mouse fibroblasts has been monitored. During the differentiation of this cell from a fibroblast to an adipocyte, holocarboxylase synthetase activity was found to increase threefold, while pyruvate carboxylase activity rose 20-fold. The results suggest a possible relationship between the activity of the holocarboxylase synthetase and the level of the biotin-dependent carboxylases within the mammalian cell. Utilizing digitonin fractionation. the intracellular distribution of this enzyme has also been examined. In the 3T3-L1 cell, the large majority (approximately 70%) of the total holocarboxylase synthetase activity was found in the cytosolic compartment.  相似文献   

8.
Multiple biotin-containing proteins in 3T3-L1 cells.   总被引:2,自引:1,他引:1       下载免费PDF全文
Extracts of 3T3-L1 cells prepared after labelling the monolayer cultures with [3H]biotin contained numerous protein bands that were detected by fluorography of dried SDS/polyacrylamide electrophoresis gels. All labelled proteins in the extracts could be removed by avidin affinity chromatography. The biotin-containing subunits of acetyl-CoA carboxylase, pyruvate carboxylase, methylcrotonyl-CoA carboxylase and propionyl-CoA carboxylase, with molecular masses of approx. 220, 120, 75 and 72 kDa respectively, were detected together with minor bands at 100, 85 and 37 kDa that did not appear to be partial degradation products. Additional labelled bands increased in amount during incubation of cell extracts or did not occur in extracts prepared with trichloroacetic acid, 9.5 M-urea or proteolytic inhibitors, and were tentatively classified as partial degradation products. The unknown bands were not removed by incubation of cell monolayers for 24 h, a treatment that gave degradation rate constants of 0.47 day-1 for acetyl-CoA carboxylase and 0.28 day-1 for pyruvate carboxylase. Upon two-dimensional electrophoresis, pyruvate carboxylase, methylcrotonyl-CoA carboxylase and propionyl-CoA carboxylase had isoelectric points of 6.4, 7.2 and 6.4 respectively. Several additional discrete spots with isoelectric points below 6.2 were also present. All the unknown biotin-containing proteins banded with intact mitochondria during density-gradient centrifugation. We conclude that several unknown biotin-containing proteins are present in the mitochondria of 3T3-L1 cells, whereas others are partial breakdown products of mitochondrial proteolysis.  相似文献   

9.
A glucose transporter cDNA (GLUT) clone was isolated from mouse 3T3-L1 adipocytes and sequenced. The nucleotide and deduced amino acid sequences were, respectively, 95 and 99% homologous to those of the rat brain transporter. The mouse cDNA and a polyclonal antibody recognizing the corresponding in vitro translation product were used to compare changes in transporter mRNA and protein levels during differentiation, glucose starvation, and chronic insulin exposure of 3T3-L1 preadipocytes. The respective cellular content of transporter mRNA and protein were increased 6.6- and 7.8-fold during differentiation, and 3.8- and 2.5-fold from chronic insulin exposure of differentiated adipocytes. Glucose starvation increased transporter mRNA and protein levels 2.2- and 3.5-fold in undifferentiated preadipocytes and 1.8- and 3.1-fold in differentiated adipocytes. Starvation of undifferentiated cells completely converted the native transporter to an incompletely glycosylated form, while increasing basal transport rates 4.5-fold. Either full glycosylation is not required to produce a functionally active transporter, or starvation causes a unique predifferentiation induction of the normally absent "responsive" transporter. The changes in transporter protein expression elicited by differentiation were attributed primarily to increased rates of transporter synthesis, while the disproportionate changes in mRNA and protein expression from chronic insulin treatment and starvation suggested these conditions increase synthesis and decrease turnover rates in regulating transporter protein expression. Although chronic insulin exposure and glucose starvation each raised the expression of transporter protein greater than 3-fold and basal transport rates 2.5- to 4.5-fold, no significant increase in the insulin responsiveness of 3T3-L1 preadipocytes or differentiated adipocytes was observed. Thus, the changes in the transporter mRNA and protein expression observed in this study were most consistent with their being associated with the regulated expression of a basal or low level insulin-responsive transporter.  相似文献   

10.
Transport of mitochondrial acetyl units to the cytoplasm for fatty acid synthesis via the citrate cleavage pathway requires replenishment of mitochondrial oxaloacetate. Pyruvate carboxylase is though to fulfill this role although compelling evidence has been lacking. During lipogenic differentiation of 3T3-L1 preadipocytes, pyruvate carboxylase activity rises 18-fold in close coordination with fat accumulation and the activity of ATP-citrate lyase, an established lipogenic enzyme. The activities of enzymes less directly related to lipogenesis rise only 3–5-fold while other unrelated enzymes do not increase significantly. These results indicate that pyruvate carboxylase is in fact a lipogenic enzyme.  相似文献   

11.
Adipocyte differentiation comprises altered gene expression and increased triglyceride storage. To investigate the interdependency of these two events, 3T3-L1 cells were differentiated in the presence of glucose or pyruvate. All adipocytic proteins examined were similarly increased between the two conditions. In contrast, 3T3-L1 adipocytes differentiated with glucose exhibited significant lipid accumulation, which was largely suppressed in the presence of pyruvate. Subsequent addition of glucose to the latter cells restored lipid accumulation and acute rates of insulin-stimulated lipogenesis. These data indicate that extracellular energy is required for induction of adipocytic proteins, while only glucose sustained the parallel increase in triglyceride storage.  相似文献   

12.
13.
Photoaffinity labeling and fatty acid permeation in 3T3-L1 adipocytes   总被引:7,自引:0,他引:7  
Long chain fatty acid uptake was investigated in 3T3-L1 cells. Differentiation of these cells from fibroblasts to adipocytes was accompanied by an 8.5-fold increase in the rate of oleate uptake. This was saturable in adipocytes with apparent Kt and Vmax values of 78 nM and 16 nmol/min/mg cell protein, respectively. A number of proteins in various subcellular fractions of differentiated cells were labeled with the photoreactive fatty acid 11-m-diazirinophenoxy[11-3H]undecanoate. A 15-kDa cytoplasmic protein was induced upon differentiation to adipocytes. This protein was labeled with the photoreactive fatty acid in cytoplasm isolated from differentiated adipocytes, but not in cytoplasm from undifferentiated, fibroblastic cells. Furthermore, a high affinity fatty acid binding protein of 22 kDa was identified in plasma membranes of undifferentiated cells, and its level of labeling increased 2-fold upon differentiation. These results indicate the usefulness of the photoreactive fatty acid in identifying cellular fatty acid binding proteins, and its potential to elucidate the spatial and temporal distribution of fatty acids in intact cells.  相似文献   

14.
The cell adhesion glycoprotein LFA-3 is expressed on the cell surface of nucleated cells in both a membrane-spanning form and a glycosyl phosphatidylinositol-anchored form. To determine whether distinct membrane anchors direct the dynamics of a given protein, the turnover of biosynthetically 35S-labeled and biotin surface-labeled LFA-3 molecules was followed. It is shown here that (a) expression of the two LFA-3 forms is regenerated with similar kinetics after enzymatic removal from the cell surface; (b) neither of the distinct LFA-3 molecules undergoes constitutive internalization; and (c) transmembrane and glycosyl phosphatidylinositol-anchored LFA-3 have an unusually long life span with an identical half-life of 50 h. Thus, the type of membrane anchor is not affecting turnover characteristics of a particular cell surface glycoprotein.  相似文献   

15.
P M Ahmad  F Ahmad 《FASEB journal》1991,5(10):2482-2485
The effect of biotin on the induction (and possible requirement for uptake into mitochondria) of apopyruvate carboxylase has been examined in 3T3-L adipocytes. Cells fed biotin-sufficient medium contained only holoenzyme in mitochondria and no apoenzyme was detected. The amount of apoenzyme elaborated in biotin-deficient 3T3-L adipocytes was comparable to the holopyruvate carboxylase protein found in cells maintained on biotin-sufficient medium. Like the holoenzyme, the apoenzyme was detected exclusively in the mitochondrial fraction of 3T3-L adipocytes. This indicates that the synthesis of apopyruvate carboxylase and its translocation into mitochondria occur independently of the cofactor, biotin.  相似文献   

16.
Skeletal muscle cells and adipose cells have a close relationship in developmental lineage. Our previous study has shown that the heterokaryons between quail myoblasts and undifferentiated 3T3-L1 cells (preadipocytes) normally differentiated into myotubes, whereas the heterokaryons between myoblasts and differentiated 3T3-L1 cells (adipocytes) failed myogenic differentiation. These results suggest differences between preadipocytes and adipocytes. The purpose of this study was to clarify whether preadipocytes have flexibility in differentiation before terminal adipose differentiation. Presumptive quail myoblasts transformed with a temperature-sensitive mutant of Rous sarcoma virus (QM-RSV cells) and mouse 3T3-L1 cells (either preadipocytes or adipocytes) were co-cultured for 48 h under conditions allowing myogenic differentiation. On co-culture between myoblasts and undifferentiated 3T3-L1 cells, heterokaryotic myotubes formed spontaneously, but not on co-culture with differentiated 3T3-L1 cells. In addition, the heterokaryotic myotubes expressed mouse myogenin derived from the 3T3-L1 cell gene. Our previous study indicated that the fusion sensitivity of differentiating myoblasts change with decreasing cholesterol of the cell membrane during myoblast fusion. Thus we compared the level of membrane cholesterol between undifferentiated and differentiated 3T3-L1 cells. The result showed that the level of membrane cholesterol in 3T3-L1 cells increases during adipose differentiation. Corresponding to the increase in membrane cholesterol content, differentiated 3T3-L1 cells had lower sensitivity to HVJ (Sendai virus)-mediated cell fusion than undifferentiated 3T3-L1 cells. This study demonstrated that 3T3-L1 cells at an undifferentiated state have a capacity for spontaneous fusion with differentiating myoblasts following myogenic differentiation, and that the capacity is lost after terminal adipose differentiation.  相似文献   

17.
Three biotin-dependent enzymes, pyruvate carboxylase (PC), propionyl CoA carboxylase (PCC), and beta-methylcrotonyl CoA carboxylase (beta MCC), were biochemically characterized in fibroblasts from two patients with neonatal multiple carboxylase deficiency. Genetic complementation analyses indicated that both cell lines, designated lines 1 and 2, were deficient in the various carboxylase activities and belonged to the bio complementation group. The activities of the three carboxylases became normal when line 2 cells were incubated in medium supplemented with biotin (1 mg/l) for 24 hrs, whereas 4-6 days were required to achieve maximum activities of PC, PCC, and beta MCC (57%, 46%, and 29% of mean normal enzyme activity, respectively) in line 1 cells incubated in medium containing up to 10 mg/1 biotin. Furthermore, PC activity in line 2 continued to increase under apparent gluconeogenic conditions in culture, but not in line 1. Thermostability studies suggested that biotin stabilizes PC and beta MCC in both cell lines. PC in line 1 cells incubated with or without biotin was less stable than that in normal or line 2 cells, and the less than normal increase of enzyme activities in line 1, especially that of PC, may represent incomplete biotination. These results indicate that there is biochemical heterogeneity within the bio complementation group. Immunotitration with antibodies prepared against purified pig heart PCC demonstrated normal quantities of cross-reacting material in both lines and no differences in the amount of this material after incubation with supplemental biotin, despite the seven- to 20-fold increase in PCC activity. Thus, the increase in carboxylase activity in both bio lines appears to represent activation of rpe-existing apocarboxylase rather than de novo enzyme synthesis. The primary defect in this form of multiple carboxylase deficiency may be in a common holocarboxylase synthetase or in biotin transport. If the defect is in the synthetase, the differences noted between the two bio lines could be explained by a difference in the enzyme's Km for biotin.  相似文献   

18.
The effect of insulin on protein biosynthesis was examined in differentiated 3T3-L1 and 3T3-F442A adipocytes. Insulin altered the relative rate of synthesis of specific proteins independent of its ability to hasten conversion of the fibroblast (preadipocyte) phenotype to the adipocyte phenotype. Although more than one pattern of response to insulin was observed, we focused on the induction of a Mr 33,000 protein which was identified as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Exposure of 3T3 adipocytes to insulin throughout differentiation specifically increased GAPDH activity and protein content by 2- to 3-fold as compared to 3T3 adipocytes differentiated in the absence of insulin. These changes in enzyme activity and content could be accounted for by a 4-fold increase in the relative rate of synthesis of GAPDH and a 9-fold increase in hybridizable mRNA levels. Within 2 h of insulin addition to 3T3 adipocytes differentiated in the absence of hormone, hybridizable GAPDH mRNA levels increased 3-fold, and within 24 h GAPDH mRNA levels increased 8-fold, and [35S] methionine incorporation into GAPDH protein increased 5-fold. The increase in GAPDH mRNA and GAPDH biosynthesis could be demonstrated using physiologic concentrations of insulin (0.24 nM), indicating that these effects are mediated through a specific interaction with the insulin receptor. These studies demonstrate that insulin, as the sole hormonal perturbant, can increase the synthesis of certain 3T3 adipocyte proteins by altering the cellular content of a specific mRNA.  相似文献   

19.
Pyruvate carboxylase (EC 6.4.1.1) was obtained from the fungus Leptosphaeria michotü (West) Sacc. and enriched 543-fold by a 5-step purification procedure as an a4-β4 tetramer of Mr 440000, composedof a Mr 60000 α-subunit, containing bound biotin, and a Mr 50000 β-subunit. The enzyme was active from pH 6.5 to 12.0, with a maximum between pH 8.0 and 8.5. Its specific activity was 125nkat (mg protein)−1: it was not affected by acetyl CoA. A rabbit antiserum raised against the yeast pyruvate carboxylase was specifically reactive against the α-subunits of the L. michotü enzyme. The enzyme was localized into the cytosol by gold-labelled streptavidin and immunogold staining of thin sections of Lowicryl-K4M-embedded colonies. Pyruvate carboxylase and acetylCoA carboxylase in L. michotü had synchronous activity rhythms at constant temperature and in darkness; these rhythms were suppressed by cycloheximide or avidin supply. The pyruvate carboxylase level was quantified along the activity rhythm by gel electrophoresis using 35S-streptavidin. and by enzyme-linked immunosorbent assay (ELISA) using serum against the yeast pyruvate carboxylase. The cyclic variations of pyruvate carboxylase activity were correlated with cyclic variations in the enzyme level. Suppression of pyruvate and acetyl CoA carboxylase activities by avidin had a no important effect on the transaminase rhythms of L. michotü .  相似文献   

20.
Repression of excessive increase and enlargement of adipocytes that is closely associated with obesity is effective in the prevention and treatment of metabolic syndrome. Generally, apoptosis is induced in cells via a wide variety of intracellular or extracellular substances, and recently, it has been suggested that the FoxO subfamily is involved in the induction of apoptosis. We aimed to elucidate the mechanism of FoxO-mediated apoptosis-induction in the adipocytes under the reactive oxygen species (ROS) stimulus. The treatment of differentiated and undifferentiated 3T3-L1 cells with glucose oxidase (GOD), an enzyme that generates H2O2, induced apoptosis and led to the accumulation of 8-OHdG. Apoptosis analysis revealed that GOD treatment induced apoptosis in differentiated 3T3-L1 cells less efficiently than in undifferentiated preadipocytes. GOD remarkably increased the levels of Bad, Bax, and Bim—the genes that are actively involved in cell apoptosis. GOD treatment also increased the expression of FoxO3a mRNA and protein. The introduction of FoxO3a-siRNA into 3T3-L1 cells suppressed the oxidative stress-induced expression of Bim mRNA, as well as the GOD-induced apoptosis. Furthermore, the expression of MnSOD, Cu/ZnSOD, and catalase, as well as of FoxO, increased significantly along with the progression of adipocyte differentiation. These results indicated that ROS-induced apoptosis in undifferentiated 3T3-L1 cells via the expression of FoxO3a, whereas FoxO expression suppressed the ROS-induced apoptosis in differentiated 3T3-L1 cells via the expression of ROS-scavenging enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号