首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA sequences in the alcohol dehydrogenase genes of flies representing the major groups of Hawaiian Drosophila are used to clarify the relationships of these groups, among themselves and with mainland Drosophila. The topology of the tree derived from these sequences agrees with karyotypic and morphological data but disagrees, in part, with the results of an earlier study that used immunological comparisons between variants of a larval hemolymph protein. A time scale, derived from a comparison of closely related Hawaiian Drosophila species, provides divergence-time estimates that are substantially more recent than those obtained from the immunological studies, although they are still within the bounds set by fossil and biogeographical evidence. The two major lineages of Hawaiian Drosophila, the scaptomyzoids and the drosophiloids, are shown to be widely separated from one another. The scaptomyzoids appear to have diverged early in the history of the subgenus Drosophila, greater than 25 Mya. While hundreds of scaptomyzoid species are found in the Hawaiian archipelago, many fewer are found elsewhere around the world, suggesting that they could have originated outside Hawaii. The drosophiloid lineage is strictly endemic to Hawaii and originated little more than 10 Mya, according to the alcohol dehydrogenase molecular clock. Thus, Drosophila apparently inhabited the Hawaiian archipelago (greater than or equal to 5 Myr before the emergence of the oldest existing high island, Kauai, 5 Mya.  相似文献   

2.
The endemic Hawaiian Succineidae represent an important component of the exceptionally diverse land snail fauna of the Hawaiian Islands, yet they remain largely unstudied. We employed 663-bp fragments of the cytochrome oxidase I (COI) mitochondrial gene to investigate the evolution and biogeography of 13 Hawaiian succineid land snail species, six succineid species from other Pacific islands and Japan, and various outgroup taxa. Results suggest that: (1) species from the island of Hawaii are paraphyletic with species from Tahiti, and this clade may have had a Japanese (or eastern Asian) origin; (2) species from five of the remaining main Hawaiian islands form a monophyletic group, and the progression rule, which states that species from older islands are basal to those from younger islands, is partially supported; no geographic origin could be inferred for this clade; (3) succineids from Samoa are basal to all other succineids sampled (maximum likelihood) or unresolved with respect to the other succineid clades (maximum parsimony); (4) the genera Succinea and Catinella are polyphyletic. These results, while preliminary, represent the first attempt to reconstruct the phylogenetic pattern for this important component of the endemic Hawaiian fauna.  相似文献   

3.
The Hawaiian Drosophilidae are comprised of an estimated 1000 species, all arising from a single common ancestor in the last 25 million years. This group, because of its species diversity, marked sexual dimorphism and complex mating behavior, host plant specificity, and the well-known chronology of the Hawaiian Archipelago, is an excellent model system for evolutionary studies. Here we present a phylogeny of this group based on ~2.6 kb of mitochondrial DNA sequence. Our taxon sampling is the most extensive to date, with nearly 200 species representing all species groups and most subgroups from the larger clades. Our results suggest that the picture wing and modified mouthpart species, long believed to be derived within this radiation, may actually occupy a basal position in the phylogeny. The haleakale species group, in contrast, is strongly supported as sister to the AMC clade. We use the phylogenetic results to examine the evolution of two important ecological characters, the host family and type of substrate used for oviposition and larval development. Although both host and substrate transitions are common in the group, oviposition substrate is more conserved among species groups than host plant family. While the ancestral host plant family is equivocally reconstructed, our results suggest that the ancestor of this group may have used rotting bark as a primary oviposition substrate.  相似文献   

4.
Species occurring in unconnected, but similar habitats and under similar selection pressures often display strikingly comparable morphology, behaviour and life history. On island archipelagos where colonizations and extinctions are common, it is often difficult to separate whether similar traits are a result of in situ diversification or independent colonization without a phylogeny. Here, we use one of Hawaii's most ecologically diverse and explosive endemic species radiations, the Hawaiian fancy case caterpillar genus Hyposmocoma, to test whether in situ diversification resulted in convergence. Specifically, we examine whether similar species utilizing similar microhabitats independently developed largely congruent larval case phenotypes in lineages that are in comparable, but isolated environments. Larvae of these moths are found on all Hawaiian Islands and are characterized by an extraordinary array of ecomorphs and larval case morphology. We focus on the ‘purse cases’, a group that is largely specialized for living within rotting wood. Purse cases were considered a monophyletic group, because morphological, behavioural and ecological traits appeared to be shared among all members. We constructed a phylogeny based on nuclear and mitochondrial DNA sequences from 38 Hyposmocoma species, including all 14 purse case species and 24 of non‐purse case congeners. Divergence time estimation suggests that purse case lineages evolved independently within dead wood and developed nearly identical case morphology twice: once on the distant Northwest Hawaiian Islands between 15.5 and 9 Ma and once on the younger main Hawaiian Islands around 3.0 Ma. Multiple ecomorphs are usually found on each island, and the ancestral ecomorph of Hyposmocoma appears to have lived on tree bark. Unlike most endemic Hawaiian radiations that follow a clear stepwise progression of colonization, purse case Hyposmocoma do not follow a pattern of colonization from older to younger island. We postulate that the diversity of microhabitats and selection from parasitism/predation from endemic predators may have shaped case architecture in this extraordinary endemic radiation of Hawaiian insects.  相似文献   

5.
Hawaiian biogeography and the islands' freshwater fish fauna   总被引:3,自引:0,他引:3  
Aim This paper describes known patterns in the distributions and relationships of Hawaiian freshwater fishes, and compares these patterns with those exhibited by Hawaii's terrestrial biota. Location The study is based in Hawaii, and seeks patterns across the tropical and subtropical Indo‐west Pacific. Methods The study is based primarily on literature analysis. Results The Hawaiian freshwater fish fauna comprises five species of goby in five different genera (Gobiidae). Four species are Hawaiian endemics, the fifth shared with islands in the western tropical Pacific Ocean. All genera are represented widely across the Indo‐west Pacific. All five species are present on all of the major Hawaiian islands. All five species are amphidromous – their larval and early juvenile life being spent in the sea. Although there has been some local phyletic evolution to produce Hawaiian endemics, there has been no local radiation to produce single‐island endemics across the archipelago. Nor is there evidence for genetic structuring among populations in the various islands. Main conclusions In this regard, the freshwater fish fauna of Hawaii differs from the well‐known patterns of local evolution and radiation in Hawaiian Island terrestrial taxa. Amphidromy probably explains the biogeographical idiosyncrasies of the fish fauna – dispersal through the sea initially brought the fish species to Hawaii, and gene flow among populations, across the archipelago, has hitherto inhibited the evolution of local island endemics, apparently even retarding genetic structuring on individual islands.  相似文献   

6.
We investigated the origin of Hawaiian Pittosporum and their relationship to other South Pacific Pittosporum species using internal transcribed spacer sequences of nuclear ribosomal DNA. We performed both maximum-parsimony and maximum-likelihood analyses, which produced congruent results. Sequence divergence was 0.0% between Hawaiian members of Pittosporum. These taxa formed a strongly supported clade, suggesting a single colonization event followed by phyletic radiation. Sister to the Hawaiian clade were two South Pacific species, P. yunckeri from Tonga and P. rhytidocarpum from Fiji. This result presents convincing evidence for a South Pacific origin of Hawaiian Pittosporum. Our results also identify a monophyletic group comprising three species representing the Fijian Province and East Polynesia, two introductions onto New Caledonia, and at least one (but possibly two) introduction(s) onto New Zealand. Whether the New Zealand taxa form a monophyletic group is unclear from these data. Previous morphologically based hypotheses, however, suggest the presence of four different lineages occupying New Zealand. The nonmonophyly of the New Caledonian species was not surprising based on the extent of their morphological diversity. Although this latter result is not strongly supported, these species are morphologically complex and are currently the subject of taxonomic revision and molecular systematic analyses.  相似文献   

7.
The alcohol dehydrogenase (Adh) gene in the Hawaiian species of fruit fly, Drosophila affinidisjuncta, like the Adh genes from all Drosophila species analyzed, is expressed at high levels in the larval fat body via a larval-specific promoter. To identify the cis-acting elements involved in this highly conserved aspect of Adh gene expression, deleted D. affinidisjuncta genes were introduced into D. melanogaster by somatic transformation. Unlike previously described methods, this transformation system allows analysis of Adh gene expression specifically in the larval fat body. The arrangement of sequences influencing expression of the proximal promoter of this gene in the larval fat body differs markedly from that described for the Adh gene from the distant relative, D. melanogaster. Multiple redundant elements dispersed 5' and 3' to the gene, only some of which map to regions carrying evolutionarily conserved sequences, affect expression in the fat body. D. affinidisjuncta employs a novel mode of Adh gene regulation in which the proximal promoter is influenced by sequences having roles in expression of the distal promoter. This gene is also unique in that far upstream sequences can compensate for loss of sequences within 200 bp of the proximal RNA start site. Furthermore, expression is influenced in an unusual, context-dependent manner by a naturally-occurring 3' duplication of the proximal promoter--a feature found only in Hawaiian species.  相似文献   

8.
The impact of alien species on native organisms is a cause for concern worldwide, with biological invasions commonplace today. Suppression efforts targeting many invasive species have included introductions of biological control agents. The numerous releases of biological control agents in the Hawaiian archipelago have resulted in considerable concern for non-target impacts, due to high levels of non-target parasitism observed to occur in some cases. This study investigated the impact of introduced Hymenoptera parasitoids on a Hawaiian moth. The endemic Hawaiian moth Udea stellata (Butler) has seven alien parasitoids associated with it, two purposely introduced, three adventive, and two of uncertain origin. The objective of this study was to determine the relative contribution of the seven parasitoid species to the population dynamics of U. stellata by constructing partial life tables. Marginal attack rates and associated k-values were calculated to allow comparison of mortality factors between experimental sites. Sentinel larvae were deployed on potted host plants and left in the field for 3-day intervals in open and exclusion treatments. The factors that contributed to total mortality in the open treatment were: disappearance (42.1%), death due to unknown reasons during rearing (16.5%) and parasitism (4.9%). The open treatment incurred significantly higher larval disappearance compared to the exclusion treatment (7.8%), which suggests that in large part disappearance is the result of predation. Adventive parasitoids inflicted greater total larval mortality attributable to parasitism (97.0%) than purposely introduced species (3.0%).  相似文献   

9.
Aim To estimate the rate of adaptive radiation of endemic Hawaiian Bidens and to compare their diversification rates with those of other plants in Hawaii and elsewhere with rapid rates of radiation. Location Hawaii. Methods Fifty‐nine samples representing all 19 Hawaiian species, six Hawaiian subspecies, two Hawaiian hybrids and an additional two Central American and two African Bidens species had their DNA extracted, amplified by polymerase chain reaction and sequenced for four chloroplast and two nuclear loci, resulting in a total of approximately 5400 base pairs per individual. Internal transcribed spacer sequences for additional outgroup taxa, including 13 non‐Hawaiian Bidens, were obtained from GenBank. Phylogenetic relationships were assessed by maximum likelihood and Bayesian inference. The age of the most recent common ancestor and diversification rates of Hawaiian Bidens were estimated using the methods of previously published studies to allow for direct comparison with other studies. Calculations were made on a per‐unit‐area basis. Results We estimate the age of the Hawaiian clade to be 1.3–3.1 million years old, with an estimated diversification rate of 0.3–2.3 species/million years and 4.8 × 10?5 to 1.3 × 10?4 species Myr?1 km?2. Bidens species are found in Europe, Africa, Asia and North and South America, but the Hawaiian species have greater diversity of growth form, floral morphology, dispersal mode and habitat type than observed in the rest of the genus world‐wide. Despite this diversity, we found little genetic differentiation among the Hawaiian species. This is similar to the results from other molecular studies on Hawaiian plant taxa, including others with great morphological variability (e.g. silverswords, lobeliads and mints). Main conclusions On a per‐unit‐area basis, Hawaiian Bidens have among the highest rates of speciation for plant radiations documented to date. The rapid diversification within such a small area was probably facilitated by the habitat diversity of the Hawaiian Islands and the adaptive loss of dispersal potential. Our findings point to the need to consider the spatial context of diversification – specifically, the relative scale of habitable area, environmental heterogeneity and dispersal ability – to understand the rate and extent of adaptive radiation.  相似文献   

10.
The fern genus Dryopteris (Dryopteridaceae) is represented in the Hawaiian Islands by 18 endemic taxa and one non-endemic, native species. The goals of this study were to determine whether Dryopteris in Hawai'i is monophyletic and to infer the biogeographical origins of Hawaiian Dryopteris by determining the geographical distributions of their closest living relatives. We sequenced two chloroplast DNA fragments, rbcL and the trnL-F intergenic spacer (IGS), for 18 Hawaiian taxa, 45 non-Hawaiian taxa, and two outgroup species. For individual fragments, we estimated phylogenetic relationships using Bayesian inference and maximum parsimony. We performed a combined analysis of both cpDNA fragments employing Bayesian inference, maximum parsimony, and maximum likelihood. These analyses indicate that Hawaiian Dryopteris is not monophyletic, and that there were at least five separate colonizations of the Hawaiian Islands by different species of dryopteroid ferns, with most of the five groups having closest relatives in SE Asia. The results suggest that one colonizing ancestor, perhaps from SE Asia, gave rise to eight endemic taxa (the glabra group). Another colonizing ancestor, also possibly from SE Asia, gave rise to a group of five endemic taxa (the exindusiate group). Dryopteris fusco-atra and its two varieties, which are endemic to Hawai'i, most likely diversified from a SE Asian ancestor. The Hawaiian endemic Nothoperanema rubiginosum has its closest relatives in SE Asia, and while the remaining two species, D. wallichiana and D. subbipinnata, are sister species, their biogeographical origins could not be determined from these analyses due to the widespread distributions of D. wallichiana and its closest non-Hawaiian relative.  相似文献   

11.
Objective: To determine whether the prevalence of obesity in ethnic admixture adults varies systematically from the average of the prevalence estimates for the ethnic groups with whom they share a common ethnicity. Methods and Procedures: The sample included 215,000 adults who reported one or more ethnicities, height, weight, and other characteristics through a mailed survey. Results: The highest age‐adjusted prevalence of overweight (BMI ≥ 25) was in Hawaiian/Latino men (88%; n = 41) and black/Latina women (74.5%; n = 79), and highest obesity (BMI ≥ 30) rates were in Hawaiian/Latino men (53.7%; n = 41) and Hawaiian women (39.2%, n = 1,247). The prevalence estimates for most admixed groups were similar to or higher than the average of the prevalences for the ethnic groups with whom they shared common ethnicities. For instance, the prevalence of overweight/obesity in five ethnic admixtures—Asian/white, Hawaiian/white, Hawaiian/Asian, Latina/white, and Hawaiian/Asian/white ethnic admixtures—was significantly higher (P < 0.0001) than the average of the prevalence estimates for their component ethnic groups. Discussion: The identification of individuals who have a high‐risk ethnic admixture is important not only to the personal health and well‐being of such individuals, but could also be important to future efforts in order to control the epidemic of obesity in the United States.  相似文献   

12.
The marine environment offers few obvious barriers to dispersal for broadcast-spawning species, yet population genetic structure can occur on a scale much smaller than the theoretical limits of larval dispersal. Comparative phylogeographical studies of sympatric sister species can illuminate how differences in life history, behaviour, and habitat affinity influence population partitioning. Here we use a mitochondrial DNA marker (612 bp of cytochrome c oxidase subunit I) to investigate population structure of three endemic Hawaiian broadcast-spawning limpets (Cellana spp.) with planktonic larvae that are competent to settle within 4 days. All three species exhibit significant population structure and isolation by distance, but the spatial scales of partitioning differ among the species. Cellana talcosa (n = 105) exhibits strong population structure between Kauai and the other main Hawaiian Islands (MHI) where the maximum channel width is 117 km, and no shared haplotypes were observed (Phi(CT) = 0.30, P < 0.001). In contrast, populations of Cellana exarata (n = 149) and Cellana sandwicensis (n = 109) exhibit weaker population structure within the MHI (Phi(ST) = 0.03-0.04, P < 0.05), and between the MHI and the Northwestern Hawaiian Islands (Phi(ST) = 0.03-0.09, P < 0.01), where the maximum channel width is 260 km. Biogeographical range and microhabitat use were correlated with estimates of dispersal, while phylogenetic affiliation and minimum pelagic larval duration were poor predictors of population partitioning. Despite similar life histories, these closely related limpets have contrasting patterns of population structure, illustrating the danger of relying on model species in management initiatives to predict population structure and dispersal in the context of marine protected area delineation.  相似文献   

13.
本文描述了锯(虫兆)属Papirioides亚属一新种,它具有夏威夷种P. serrata的许多特征,而与越南北部的P. aequituberculata最为相近。但该新种通过面部毛序具多种类型,大腹前部背面较多大毛和弹器齿节腹面的稳定毛序类型等主要特征与后者区分。包括本新种在内,目前已知国内有mirabilis(Denis)(福建),jacobsoni Folsom(台湾),yunnanus Itot(云南)等4种Papirioides亚属的弹尾目昆虫。  相似文献   

14.
The study of spatial and temporal distribution and diversity of ichthyoplankton (fish eggs and larvae) can provide fisheries-independent information on the population dynamics and recruitment processes of marine fish species. Ichthyoplankton studies in the Southern Ocean have to date been largely constrained to the summer months. We analysed ichthyoplankton data collected from a year round, long term (2002–2008), plankton trawl sampling programme in a large fjord system (Cumberland Bay) at South Georgia, sub-Antarctic (54.25°S, 36.5°W) to assess temporal changes in larval fish diversity and abundance. Larvae of 22 species, representing nine families, were identified although three, Krefftichthys anderssoni (Myctophidae), Lepidonotothen nudifrons/Trematomus hansoni (Nototheniidae) and Champsocephalus gunnari (Channichthyidae), dominated abundance in all years. Significant seasonal and interannual differences in the larval fish assemblage were revealed by multivariate analyses. Estimates of larval growth are provided for five abundant species. Considerable inter-specific differences in relative larval growth rate were recorded but interannual variability within species was small. However, in the commercially important C. gunnari, multiple larval cohorts, representing a protracted spawning season, were observed to grow at different rates, and this may be related to temperature and/or food availability. A comparison with historical growth data from South Georgia suggests there has been little change in growth rate for the main species over the last three decades.  相似文献   

15.
Abstract  A new species of the subgenus Ptenothrix (Papirioides) is described from Anhui Province, China. It shares many characters with the Hawaiian species serrata Snider and is most similar to the Asian species aequituberculata Stach from North Vietnam except its variable facial setal patterns, larger setae on anterior dorsum of great abdomen and constant setal pattern of ventral dens.  相似文献   

16.
Avian malaria is an important cause of the decline of endemic Hawaiian honeycreepers. Because of the complexity of this disease system we used a computer model of avian malaria in forest birds to evaluate how two proposed conservation strategies: 1) reduction of habitat for mosquito larvae and 2) establishment of a low-elevation, malaria-tolerant honeycreeper (Hawaii Amakihi) to mid-elevation forests would affect native Hawaiian honeycreeper populations. We evaluated these approaches in mid-elevation forests, where malaria transmission is seasonal and control strategies are more likely to work. Our model suggests the potential benefit of larval habitat reduction depends on the level of malaria transmission, abundance of larval cavities, and the ability to substantially reduce these cavities. Permanent reduction in larval habitat of >80% may be needed to control abundance of infectious mosquitoes and benefit bird populations. Establishment of malaria-tolerant Amakihi in mid-elevation forests increases Amakihi abundance, creates a larger disease reservoir, and increases the abundance of infectious mosquitoes which may negatively impact other honeycreepers. For mid-elevation sites where bird populations are severely affected by avian malaria, malaria-tolerant Amakihi had little impact on other honeycreepers. Both management strategies may benefit native Hawaiian honeycreepers, but benefits depend on specific forest characteristics, the amount of reduction in larval habitat that can be achieved, and how malaria transmission is affected by temperature.  相似文献   

17.
The genus Melicope (Rutaceae) occurs on most Pacific archipelagos and is perfectly suited to study Pacific biogeography. The main goal was to infer the age, geographic origin and colonization patterns of Melicope and its relatives. We sequenced three nuclear and two plastid markers for 332 specimens that represent 164 species in 16 genera of Rutaceae. Phylogenetic reconstruction, molecular dating, ancestral area reconstruction and diversification analyses were carried out. The two main clades (Acronychia‐Melicope and Euodia) originated in Australasia and their crown ages are dated to the Miocene. Diversification rates differed among the subclades and were lowest in the Euodia lineage and highest in the Hawaiian Melicope lineage. The Malagasy and Mascarene species form a clade, which split from its SE Asian relatives in the Pliocene/Pleistocene. At least eight colonizations to the Pacific islands occurred. The timing of all colonizations except for the Hawaiian group is congruent with age of the island ages. Australia, New Guinea and New Caledonia have been the source of colonizations into the Pacific islands in the Melicope clade. Melicope shows high dispersability and has colonized remote archipelagos such as the Austral and Marquesas Islands each twice. Colonization of islands of the Hawaiian‐Emperor seamount chain likely predates the ages of the current main islands, and the initial colonization to Kaua'i occurred after the splitting of the Hawaiian lineage into two subclades. Wider ecological niches and adaptations to bird‐dispersal likely account for the much higher species richness in the Acronychia‐Melicope clade compared to the Euodia clade.  相似文献   

18.
Secusio extensa (Lepidoptera: Arctiidae) was evaluated as a potential biological control agent for Madagascar fireweed, Senecio madagascariensis (Asteraceae), which has invaded over 400 000 acres of rangeland in the Hawaiian Islands and is toxic to cattle and horses. The moth was introduced from southeastern Madagascar into containment facilities in Hawaii, and host specificity tests were conducted on 71 endemic and naturalized species (52 genera) in 12 tribes of Asteraceae and 17 species of non‐Asteraceae including six native shrubs and trees considered key components of Hawaiian ecosystems. No‐choice feeding tests indicated that plant species of the tribe Senecioneae were suitable hosts with first instars completing development to adult stage on S. madagascariensis (78.3%), Delairea odorata (66.1%), Senecio vulgaris (57.1%), Crassocephalum crepidioides (41.2%), and at significantly lower rates on Emilia fosbergii (1.8%) and Erechtites hieracifolia (1.3%). A low rate of complete larval development also was observed on sunflower, Helianthus annuus (11.6%), in the tribe Heliantheae. However, sunflower was rejected as a potential host in larval‐feeding and adult oviposition choice tests involving the primary host S. madagascariensis as control. Although larvae died as first instars on most test species, incomplete development and low levels of feeding were observed on nine species in the tribes Heliantheae, Cardueae and Lactuceae. Larvae did not feed on any non‐Asteraceae tested, including species with similar pyrrolizidene alkaloid chemistry, crops, and six ecologically prominent native species. Because all species of Senecioneae are non‐native and weedy in Hawaii, these results indicate that S. extensa is sufficiently host‐specific for introduction for biological control. High levels of feeding damage observed on potted plants indicate that S. extensa can severely impact the target fireweed as well as D. odorata, a noxious weed in native Hawaiian forests.  相似文献   

19.
The Hawaiian endemic mints constitute a major island radiation, displaying a remarkable diversity of floral, fruit, and vegetative features. Haplostachys and Phyllostegia have flowers associated with insect pollination, whereas Stenogyne has flowers typical of bird pollination. The three genera had been thought to be closely related to East Asian members of Lamioideae tribe Prasieae because of the fleshy nutlets borne by Phyllostegia and Stenogyne. We evaluated the origins of the Hawaiian mints using phylogenetic analyses of DNA sequence data from the plastid rbcL and trnL intron loci and the nuclear ribosomal 5S nontranscribed spacer. The Hawaiian genera were found to be monophyletic but deeply nested inside another lamioid genus, Stachys. In particular, they were found to be most closely related to a group of temperate North American Stachys from the Pacific coast, suggesting that the Hawaiian mints derived from a single colonization event from western North America to the Hawaiian Islands. Furthermore, Stachys, which contains amphiatlantic and transberingian clades, was found to be polyphyletic, with some species more closely related to Gomphostemma, Phlomidoschema, Prasium, and Sideritis than to other species of Stachys. Based on chromosomal evidence and our phylogenetic analyses, we hypothesize that the Hawaiian mints may be polyploid hybrids whose reticulate genomes predate the Hawaiian dispersal event and are derived from Stachys lineages with flowers exhibiting insect- vs. bird-pollination characteristics. Thus, the Hawaiian endemic mints may provide yet another insular system for the combined study of polyploidy, hybrid cladogenesis, and adaptive radiation.  相似文献   

20.
Gut contents of larval, juvenile, and adult specimens of the Hawaiian gobiid fish Sicyopterus stimpsoni were examined to catalog the algal flora ingested by this species. The developmental stages of S. stimpsoni examined represented hallmark points in the fish’s life cycle corresponding with major migratory and metamorphic transitions. The algal flora was dominated by diatom species and shifted from taxa representative of a marine, planktonic community in larval fish to a freshwater, benthic community in juvenile and adult fish. This change in diet corresponds with the migration of larval fish to freshwater streams just prior to juvenile development in which rapid modification in mouth anatomy makes ingestion of planktonic algal species difficult. Benthic diatoms from juvenile and adult fish assemblages represented multiple genera that live in a narrow set of environmental conditions. These algae grow during a specific period in the development of the benthic algal community in Hawaiian streams. This suggests a highly specialized dietary behavior that depends heavily on continually restarting the benthic algal successional pattern, which appears to be regulated by the hydrological cycles of streams on the island.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号