首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three chymotryptic fragments accounting for almost the entire amino acid sequence of gizzard calponin (Takahashi, K., and Nadal-Ginard, B. (1991) J. Biol. Chem. 266, 13284-13288) were isolated and characterized. They encompass the segments of residues 7-144 (NH2-terminal 13-kDa peptide), 7-182 (NH2-terminal 22-kDa peptide), and 183-292 (COOH-terminal 13-kDa peptide). They arise from the sequential hydrolysis of the peptide bonds at Tyr182-Gly183 and Tyr144-Ala145 which were protected by the binding of F-actin to calponin. Only the NH2-terminal 13- and 22-kDa fragments were retained by immobilized Ca(2+)-calmodulin, but only the larger 22 kDa entity cosedimented with F-actin and inhibited, in the absence of Ca(2+)-calmodulin, the skeletal actomyosin subfragment-1 ATPase activity as the intact calponin. Since the latter peptide differs from the NH2-terminal 13-kDa fragment by a COOH-terminal 38-residue extension, this difference segment appears to contain the actin-binding domain of calponin. Zero-length cross-linked complexes of F-actin and either calponin or its 22-kDa peptide were produced. The total CNBr digest of the F-actin-calponin conjugate was fractionated over immobilized calmodulin. The EGTA-eluted pair of cross-linked actin-calponin peptides was composed of the COOH-terminal actin segment of residues 326-355 joined to the NH2-terminal calponin region of residues 52-168 which seems to contain the major determinants for F-actin and Ca(2+)-calmodulin binding.  相似文献   

2.
To locate functional domains of the interleukin-2 (IL-2) protein, a cDNA clone encoding biologically active human IL-2 was mutagenized using synthetic oligonucleotides to incorporate defined amino acid substitutions and deletions in the mature protein. The IL-2 analogs were then produced in Escherichia coli and assayed for the ability to induce proliferation of IL-2-dependent cells and the ability to compete for binding to the IL-2 receptor. Our analysis of over 50 different mutations demonstrated that the integrity of at least three regions of the IL-2 molecule is required for full biological activity: the NH2 terminus (residues 1-20), the COOH terminus (residues 121-133), and 2 of the 3 cysteine residues (58 and 105). Deletion of the NH2-terminal 20 amino acids or the COOH-terminal 10 amino acids resulted in the loss of greater than 99% of bioactivity and binding. Amino acid substitutions at specific positions in these regions also resulted in proteins which retained less than 1% activity. The NH2 terminus and an adjacent internal region were recognized by neutralizing anti-IL-2 antibodies. In combination with the results from epitope competition analysis with neutralizing antibodies, these data are consistent with the IL-2 protein being folded such that the NH2 terminus, the COOH terminus, and the internal 30- to 60-region are juxtaposed to form the binding site recognized by the IL-2 receptor.  相似文献   

3.
Guanylin is a guanylyl cyclase (GC)-activating peptide that is mainly secreted as the corresponding prohormone of 94 amino acid residues. In this study, we show that the originally isolated 15-residue guanylin, representing the COOH-terminal part of the prohormone, is released from the prohormone by cleavage of an Asp-Pro amide bond under conditions applied during the isolation procedures. Thus, the 15-residue guanylin is probably a non-native, chemically induced GC-activating peptide. This guanylin molecule contains two disulfide bonds that are absolutely necessary for receptor activation. We demonstrate that the folding of the reduced 15-residue guanylin results almost completely in the formation of the two inactive disulfide isomers. In contrast, the reduced form of proguanylin containing the entire prosequence folds to a product with the native cysteine connectivity. Because proguanylin lacking the 31 NH2-terminal residues of the prosequence folds only to a minor extent to guanylin with the native disulfide bonds, it is evident that this NH2-terminal region contributes significantly to the correct disulfide-coupled folding. Structural studies using CD and NMR spectroscopy show that native proguanylin contains a considerable amount of alpha-helical and, to a lesser extent, beta-sheet structural elements. In addition, a close proximity of the NH2- and the COOH-terminal regions was found by NOESY. It appears that this interaction is important for the constitution of the correct conformation and provides an explanation of the minor guanylyl cyclase activity of proguanylin by shielding the bioactive COOH-terminal domain from the receptor.  相似文献   

4.
The 72-kDa gelatinase/type IV collagenase, a metalloproteinase thought to play a role in metastasis and in angiogenesis, forms a noncovalent stoichiometric complex with the tissue inhibitor of metalloproteinase-2 (TIMP-2), a potent inhibitor of enzyme activity. To define the regions of the 72-kDa gelatinase responsible for TIMP-2 binding, a series of NH2- and COOH-terminal deletions of the enzyme were constructed using the polymerase chain reaction technique. The full-length and the truncated enzymes were expressed in a recombinant vaccinia virus mammalian cell expression system (Vac/T7). Two truncated enzymes ending at residues 425 (delta 426-631) and 454 (delta 455-631) were purified. Like the full-length recombinant 72-kDa gelatinase, both COOH-terminally truncated enzymes were activated with organomercurial and digested gelatin and native collagen type IV. In contrast to the full-length enzyme, delta 426-631 and delta 455-631 enzymes were less sensitive to TIMP-2 inhibition requiring 10 mol of TIMP-2/mol of enzyme to achieve maximal inhibition of enzymatic activity. The activated but not the latent forms of the delta 426-631 and delta 455-631 proteins formed a complex with TIMP-2 only when excess molar concentrations of inhibitor were used. We also expressed the 205-amino acid COOH-terminal fragment, delta 1-426, and found that it binds TIMP-2. In addition, a truncated version of the 72-kDa gelatinase lacking the NH2-terminal 78 amino acids (delta 1-78) of the proenzyme retained the ability to bind TIMP-2. These studies demonstrate that 72-kDa gelatinases lacking the COOH-terminal domain retain full enzymatic activity but acquire a reduced sensitivity to TIMP-2 inhibition. These data suggest that both the active site and the COOH-terminal tail of the 72-kDa gelatinase independently and cooperatively participate in TIMP-2 binding.  相似文献   

5.
The amino acid sequence of DcrA (Mr = 73,000), deduced from the nucleotide sequence of the dcrA gene from the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, indicates a structure similar to the methyl-accepting chemotaxis proteins from Escherichia coli, including a periplasmic NH2-terminal domain (Mr = 20,700) separated from the cytoplasmic COOH-terminal domain (Mr = 50,300) by a hydrophobic, membrane-spanning sequence of 20 amino acid residues. The sequence homology of DcrA and these methyl-accepting chemotaxis proteins is limited to the COOH-terminal domain. Analysis of dcrA-lacZ fusions in E. coli by Western blotting (immunoblotting) and activity measurements indicated a low-level synthesis of a membrane-bound fusion protein of the expected size (Mr = approximately 137,000). Expression of the dcrA gene under the control of the Desulfovibrio cytochrome c3 gene promoter and ribosome binding site allowed the identification of both full-length DcrA and its NH2-terminal domain in E. coli maxicells.  相似文献   

6.
Stopped-flow fluorescence spectroscopy has been used to study the reaction of human alpha-thrombin with recombinant hirudin variant 1 (rhir) at 37 degrees C and an ionic strength of 0.125 M. A 35% enhancement in intrinsic fluorescence accompanied formation of the thrombin-rhir complex. Over one third of this enhancement corresponded to a structural change that could be induced by binding of either the NH2-terminal fragment (residues 1-51) or the COOH-terminal fragment (residues 52-65) of rhir. Three kinetic steps were detected for reaction of thrombin with rhir. At high rhir concentrations (greater than or equal to 3 microM), two intramolecular steps with observed rate constants of 296 +/- 5 s-1 and 50 +/- 1 s-1 were observed. By using the COOH-terminal fragment of rhir as a competitive inhibitor, it was possible to obtain an estimate of 2.9 x 10(8) M-1 s-1 for the effective association rate constant at low rhir concentrations. At higher ionic strengths, this rate constant was lower, which is consistent with the formation of the initial complex involving an ionic interaction. The mechanism for the reaction of both the COOH- and NH2-terminal fragments of rhir appeared to involve two steps. When thrombin was reacted with the COOH-terminal fragment at high concentrations (greater than or equal to 6 microM), the bimolecular step occurred within the dead time of the spectrometer and only one intramolecular step, with a rate constant of 308 +/- 5 s-1 was observed. At concentrations of NH2-terminal fragment below 50 microM, its binding to thrombin appeared to be a bimolecular reaction with an association rate constant of 8.3 x 10(5) M-1 s-1. In the presence of saturating concentrations of the COOH-terminal fragment, a 1.7-fold increase in this rate constant was observed. At concentrations of NH2-terminal fragment greater than 50 microM, biphasic reaction traces were observed which suggests a two-step mechanism. By comparing the reaction amplitudes and dissociation constants observed with rhir and its COOH-terminal fragment, it was possible to obtain approximate estimates for the values of the rate constants of different steps in the formation of the rhir-thrombin complex.  相似文献   

7.
Bovine interferon alpha C (IFN-alpha C) manifest at least 10(5)-fold lower antiviral activity on human cells than on bovine cells (Velan, B., Cohen, S., Grosfeld, H., Leitner, M., and Shafferman, A. (1985) J. Biol. Chem. 260, 5498-5504). By oligonucleotide site-directed mutagenesis within the coding region for the NH2-terminal 44-residue domain of BoIFN-alpha C, we replaced up to 18 residues by the corresponding HuIFN-alpha J1 residues. (HuIFN-alpha J1 is less than 60% homologous in sequence to BoIFN-alpha C.) The nine different bovine-human-IFN alpha hybrids obtained were compared to BoIFN-alpha C and HuIFN-alpha J1 with respect to their potential to induce an antiviral state, synthesis of 2-5A-synthetase, and their specific binding to human and bovine cells. Relative to BoIFN-alpha C, a gradual increase in biological activities (antiviral or 2-5A-synthetase) of approximately 10-, 10(2)-, 10(3)-, and approximately 10(4)-fold is obtained, depending on the number and positions of the residues substituted. A direct correlation exists between biological response and ability of IFN alpha to bind specifically to human cells. A BoIFN alpha molecule mutated in the 10-44 NH2-terminal domain was obtained which is 15, 8, and 35% as active as HuIFN-alpha J1 on human cells in specific binding, induction of antiviral, and 2-5A-synthetase activities, respectively. We concluded that at least 5 of the 12 residues at positions 10; 21, 22, 24; 27; 31, 34, 35, 37, 40; 42, 43 in the 10-44 NH2-terminal domain are critical for recognition of the human IFN-alpha cell receptor and for biological activity. These residues are found among 10 strictly conserved residues in all reported mammalian IFN alpha S, and they act in a cooperative manner to induce a biological response in human cells. The gap between the extent of improvement in binding capacity of the BoIFN alpha mutants on human cells and the corresponding biological response suggests that the primary signal of binding to the cell receptor is amplified within the cell. On bovine cells, HuIFN-alpha J1 and BoIFN-alpha C also compete for the same receptor, and it seems that at least part of the 10-44 NH2-terminal domain on IFN alpha is also involved in interaction with the bovine IFN alpha cell receptor.  相似文献   

8.
A1 is a core protein of the eukaryotic heterogeneous nuclear ribonucleoprotein complex and is under study here as a prototype single-stranded nucleic acid-binding protein. A1 is a two-domain protein, NH2-terminal and COOH-terminal, with highly conserved primary structure among vertebrate homologues sequenced to date. It is well documented that the NH2-terminal domain has single-stranded DNA and RNA binding activity. We prepared a proteolytic fragment of rat A1 representing the COOH-terminal one-third of the intact protein, the region previously termed COOH-terminal domain. This purified fragment of 133 amino acids binds to DNA and also binds tightly to the fluorescent reporter poly(ethenoadenylate), which is used to access binding parameters. In solution with 0.41 M NaCl, the equilibrium constant is similar to that observed with A1 itself, and binding is cooperative. The purified COOH-terminal fragment can be photochemically cross-linked to bound nucleic acid, confirming that COOH-terminal fragment residues are in close contact with the polynucleotide lattice. These binding results with isolated COOH-terminal fragment indicate that the COOH-terminal domain in intact A1 can contribute directly to binding properties. Contact between both COOH-terminal domain and NH2-terminal domain residues in an intact A1:poly(8-azidoadenylate) complex was confirmed by photochemical cross-linking.  相似文献   

9.
Two recently identified pro-inflammatory proteins, namely, neutrophil activating peptide 1 (NAP-1) [also termed interleukin-8 (IL-8)] and NAP-2, were chemically synthesized, purified, and characterized. The fully protected NAP-1/IL-8 (72 residues) and NAP-2 (70 residues) peptide chains were assembled by automated solid-phase methods with average stepwise yields of 99.5 and 99.3%, resulting in overall chain assembly yields of 70 and 62%, respectively. Deprotection resulted in crude products, which were allowed to fold by air oxidation, and were purified by two cycles of reverse-phase high-pressure liquid chromatography, yielding 27 mg of NAP-1/IL-8 and 22 mg of NAP-2. Purity was established by reverse-phase high-pressure liquid chromatography and isoelectric focusing, and the primary structures of the purified products were verified by using mass spectrometry and Edman sequencing methods. Synthetic and recombinant NAP-1/IL-8 were equally active on human neutrophil granulocytes as determined by measuring the induction of cytosolic free calcium, elastase release, and chemotaxis. Synthetic NAP-2 was equivalent to purified natural NAP-2 in the elastase release and calcium mobilization assays, but it was consistently less potent (3-5-fold) as a stimulus of chemotaxis, perhaps indicative of additional chemotactic components in the natural preparation. The results indicate that by chemical synthesis these cytokines can be obtained in purity and quantities suitable for further structural analysis, as well as functional studies both in vivo and in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
To elucidate the function of the two cytokine-binding modules (CBM) of the leukemia inhibitory factor receptor (LIFR), receptor chimeras of LIFR and the interleukin-6 receptor (IL-6R) were constructed. Either the NH(2)-terminal (chimera RILLIFdeltaI) or the COOH-terminal LIFR CBM (chimera RILLIFdeltaII) were replaced by the structurally related CBM of the IL-6R which does not bind LIF. Chimera RILLIFdeltaI is functionally inactive, whereas RILLIFdeltaII binds LIF and mediates signalling as efficiently as the wild-type LIFR. Deletion mutants of the LIFR revealed that both the NH(2)-terminal CBM and the Ig-like domain of the LIFR are involved in LIF binding, presumably via the LIF site III epitope. The main function of the COOH-terminal CBM of the LIFR is to position the NH(2)-terminal CBM and the Ig-like domain, so that these can bind to LIF. In analogy to a recently published model of the IL-6R complex, a model of the active LIFR complex is suggested which positions the COOH-terminal CBM at LIF site I and the NH(2)-terminal CBM and the Ig-like domain at site III. An additional contact is postulated between the Ig-like domain of gp130 and the NH(2)-terminal CBM of the LIFR.  相似文献   

11.
Human aldose reductase and aldehyde reductase are members of the aldo-keto reductase superfamily that share three domains of homology and a nonhomologous COOH-terminal region. The two enzymes catalyze the NADPH-dependent reduction of a wide variety of carbonyl compounds. To probe the function of the domains and investigate the basis for substrate specificity, we interchanged cDNA fragments encoding the NH2-terminal domains of aldose and aldehyde reductase. A chimeric enzyme (CH1, 317 residues) was constructed in which the first 71 residues of aldose reductase were replaced with first 73 residues of aldehyde reductase. Catalytic effectiveness (kcat/Km) of CH1 for the reduction of various substrates remained virtually identical to wild-type aldose reductase, changing a maximal 4-fold. Deletion of the 13-residue COOH-terminal end of aldose reductase, yielded a mutant enzyme (AR delta 303-315) with markedly decreased catalytic effectiveness for uncharged substrates ranging from 80- to more than 600-fold (average 300-fold). The KmNADPH of CH1 and AR delta 303-315 were nearly identical to that of the wild-type enzyme indicating that cofactor binding is unaffected. The truncated AR delta 303-315 displayed a NADPH/D isotope effect in kcat and an increased D(kcat/Km) value for DL-glyceraldehyde, suggesting that hydride transfer has become partially rate-limiting for the overall reaction. We conclude that the COOH-terminal domain of aldose reductase is crucial to the proper orientation of substrates in the active site.  相似文献   

12.
In contrast to other hematopoietic cytokine receptors, the leukemia inhibitory factor receptor (LIFR) possesses two cytokine binding modules (CBMs). Previous studies suggested that the NH(2)-terminal CBM and the Ig-like domain of the LIFR are most important for LIF binding and activity. Using the recently engineered designer cytokine IC7, which induces an active heterodimer of the LIFR and gp130 after binding to the IL-6R, and several receptor chimeras of the LIFR and the interleukin-6 receptor (IL-6R) carrying the CBM of the IL-6R in place of the COOH-terminal LIFR CBM, we could assign individual receptor subdomains to individual binding sites of the ligand. The NH(2)-terminal CBM and the Ig-like domain of the LIFR bind to ligand site III, whereas the COOH-terminal CBM contacts site I. Furthermore, we show that LIFR mutants carrying the IL-6R CBM instead of the COOH-terminal CBM can replace the IL-6R by acting as an alpha-receptor for IL-6. However, in situations where a signaling competent receptor is bound at IL-6 site I, ligand binding to site III is an absolute requirement for participation of the receptor in a signaling heterodimer with gp130; i.e., a functional receptor complex of IL-6 type cytokines cannot be assembled solely via site I and II as in the growth hormone receptor complex.  相似文献   

13.
H Shimomura  D L Garbers 《Biochemistry》1986,25(11):3405-3410
Analogues of resact (Cys-Val-Thr-Gly-Ala-Pro-Gly-Cys-Val-Gly-Gly-Gly-Arg-LeuNH2) were synthesized to determine whether or not a stimulation of sperm respiration could be obtained independent of elevations of cyclic nucleotide concentrations. Modification of the CO2-terminal leucine NH2 did not alter biological activity; however, substitution of the two cysteinyl residues by Ser or Tyr or methylation of the cysteinyl residues resulted in divergent relative potencies dependent on whether respiration rates or cyclic nucleotide concentrations were measured. [Ser1,Tyr8]resact, as an example, was approximately 40% as potent as resact at stimulating respiration rates but was 1% as effective as resact at causing cyclic GMP elevations. An NH2-terminal fragment (Cys-Val-Thr-Gly-Ala-Pro-Gly) neither stimulated respiration nor elevated cyclic nucleotide levels at concentrations up to 10 microM whereas a CO2-terminal fragment (Cys-Val-Gly-Gly-Gly-Arg-LeuNH2) had approximately 20% of the respiration activity and 0.1% of the cyclic GMP elevating activity of resact. When the CO2- and NH2-terminal fragments were added simultaneously, however, cyclic nucleotide concentrations were elevated at the same relative concentrations as observed with resact. An analogue (125I-[Tyr1,Ser8]resact) was subsequently synthesized and used for receptor binding studies. Both the NH2-terminal and CO2-terminal fragments competed for binding, although they were 0.0004 and 0.025 times as effective as resact, respectively. However, in the presence of 1 microM resact-(1-7), resact-(8-14) was almost as potent as resact in the competitive binding assay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Limited pepsin digestion of human plasma albumin at pH 3.5 and 0 degrees in the presence of octanoate caused cleavage at residue 307 of the albumin molecule to yield two fragments. Thw two fragments corresponding to the NH2- and the COOH-terminal halves of the molecule were isolated in yields of about 15%. The COOH-terminal fragment is a mixture in which about 85% of the molecules had an additional cleavage at residue 422 of the albumin molecule. The COOH-terminal fragment with the additional cleavage at residue 422 contains two peptides which are linked by a disulfide bridge at residues 391 and 437 of the albumin molecule. Both the NH2- and the COOH-terminal fragment of human albumin showed no detectable binding of octanoate anions, that is, less than 1/170 of the binding constant of the primary site of human albumin. These findings differ from earlier observations on limited pepsin digestion of bovine plasma albumin where the corresponding COOH-terminal fragment had the octanoate-binding activity, about 1/8 of the primary binding constant of bovine albumin, while the NH2-terminal fragment did not. The COOH-terminal fragment of bovine albumin did not have cleavage at residue 422 as in the corresponding fragment of human albumin. However, it is not clear that the loss of octanoate-binding activity of fragment C of human albumin is a direct consequence of the cleavage at residue 422.  相似文献   

15.
P D Hoeprich  T E Hugli 《Biochemistry》1986,25(8):1945-1950
Human C3a, a 77-residue fragment released during complement activation, is a potent spasmogen that contracts smooth muscle, enhances vascular permeability, and suppresses humoral immune responses. Studies with synthetic peptides have shown that the active site of this anaphylatoxin resides in the COOH-terminal portion of C3a; the minimal peptide structure capable of expressing activity contains residues 73-77, Leu-Gly-Leu-Ala-Arg (C3a-73-77). Longer synthetic C3a analogue peptides, e.g., C3a-57-77 containing the 21 COOH-terminal amino acids, exhibit activity nearly equivalent to that of intact C3a. Circular dichroism spectra of peptide C3a-57-77 in aqueous buffer containing 25% (v/v) trifluoroethanol indicated helical structure (41% helix), and analysis of the sequence suggested an amphipathic surface. We have synthesized several 21-residue peptide analogues of the natural C3a sequence containing residues 57-77 that were designed to enhance helix and to accentuate amphipathy. Syntheses were designed to include strategic placement of the helix-promoting residues 2-aminobutyric acid (beta-methylalanine) and 2-aminoisobutyric acid (alpha-methylalanine). Two 21-residue C3a analogue peptides that were designed to enhance helical content were shown to exhibit greater biological activity than either the native factor C3a or C3a-57-77. Moreover, activity was abrogated by the appropriate placement of helix-breaking residues, e.g., proline, suggesting that a conformational requirement for activity is genuine. These observations suggest that a helical conformation is requisite for optimal C3a activity and that in intact C3a the NH2-terminal portion (residues 1-21) and the disulfide-linked core (residues 22-57) function primarily to stabilize ordered conformation at the COOH-terminal region of the molecule.  相似文献   

16.
Oryzacystatin, a cysteine proteinase inhibitor occurring in rice seeds, contains a particular glycine residue (Gly5) near the NH2-terminal position, and the sequence Gln53-Val54-Val55-Ala56-Gly57 in a central part of the molecule. Both are conserved among most members of the cystatin superfamily. We have found from Escherichia coli expression studies that the NH2-terminal 21 residues of oryzacystatin are not essential for its papain-inhibitory activity, and that the conserved pentapeptide region may be indispensable [Abe, K., Emori, Y., Kondo, H., Arai, S., & Suzuki, K. (1988) J. Biol. Chem. 263, 7655-7659]. Here we present more detailed data based on quantitative analyses of the inhibitory activities of NH2- and COOH-terminally truncated oryzacystatin and site-directed mutants at the Gln-Val-Val-Ala-Gly region. The data indicate the following results. (1) The truncated mutants lacking the NH2-terminal 21 residues or the COOH-terminal 11 residues exhibit potent papain-inhibitory activity equivalent to the activity of wild oryzacystatin. (2) However, neither the mutant lacking the NH2-terminal 38 residues nor that lacking the COOH-terminal 35 residues is completely able to inhibit papain. (3) Site-directed mutants at the Gln residue of the Gln-Val-Val-Ala-Gly region have drastically reduced papain-inhibitory activities: the Gln----Pro mutant is completely inactive and the Gln----Leu mutant has an approximately 150 times higher Ki value than wild-type oryzacystatin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The receptor for interleukin-5 (IL-5) is composed of two different subunits. The IL-5 receptor alpha (IL-5R alpha) is required for ligand-specific binding while association with the beta-chain results in increased binding affinity. Murine IL-5 (mIL-5) has similar activity on human and murine cells, whereas human IL-5 (hIL-5) has marginal activity on murine cells. We found that the combined substitution of K84 and N108 on hIL-5 by their respective murine counterpart yields a molecule which is as potent as mIL-5 for growth stimulation of a murine cell line. Since the unidirectional species specificity is due only to the interaction with the IL-5R alpha subunit, we have used chimeric IL-5R alpha molecules to define regions of hIL-5R alpha involved in species-specific hIL-5 ligand binding. We found that this property is largely determined by the NH2-terminal module of hIL-5R alpha, and detailed analysis defined D56 and to a lesser extent E58 as important for binding. Moreover, two additional residues, D55 and Y57, were identified by alanine scanning mutagenesis within the same region. Based on the observed homology between the NH2-terminal module and the membrane proximal (WSXWS-containing) module of hIL-5R alpha we located this stretch of four amino acid residues (D55, D56, Y57 and E58) in the loop region that connects the C and D beta-strands on the proposed tertiary structure of the NH2-terminal module.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Oryzacystatin, a proteinaceous cysteine proteinase inhibitor (cystatin) in rice, is comprised of 102 residues (Met1-Ala102) (Abe, K., Emori, Y., Kondo, H., Suzuki, K., and Arai, S. (1987) J. Biol. Chem. 262, 16793-16797). We constructed an expression plasmid containing a full length oryzacystatin cDNA at the multi-cloning site of pUC18 and produced a lacZ'-oryzacystatin fusion protein in Escherichia coli. The partially purified expressed protein efficiently inhibits papain activity assayed using N-benzoyl-DL-arginine-2-naphthylamide as a substrate. We also constructed expression plasmids lacking the 5'- and 3'-regions of cDNAs that encode NH2- and COOH-terminally truncated oryzacystatins. An N-truncated oryzacystatin lacking Gly5 and retaining Gln53-Val54-Val55-Ala56-Gly57 inhibited papain as efficiently as the full length oryzacystatin, although both Gly5 and Gln53-Gly57 (oryzacystatin numbering) are conserved among members of most cystatin superfamilies. However, another N-truncated oryzacystatin lacking the NH2-terminal 38 residues was almost completely inactive. On the other hand, a COOH-terminally truncated oryzacystatin lacking the COOH-terminal 11 residues possesses potent papain-inhibitory activity, whereas another COOH-terminally truncated oryzacystatin lacking 35 residues shows much less inhibitory activity, although it retains the two well conserved features Gly5 and Gln53-Gly57. These results indicate that the NH2-terminal 21 residues containing Gly5 and the COOH-terminal 11 residues are not essential, suggesting that a portion of the polypeptide segment containing Gln53-Gly57 is necessary for oryzacystatin to elicite its papain-inhibitory activity efficiently.  相似文献   

19.
A yeast gene for a methionine aminopeptidase, one of the central enzymes in protein synthesis, was cloned and sequenced. The DNA sequence encodes a precursor protein containing 387 amino acid residues. The mature protein, whose NH2-terminal sequence was confirmed by Edman degradation, consists of 377 amino acids. The function of the 10-residue sequence at the NH2 terminus, containing 1 serine and 6 threonine residues, remains to be established. In contrast to the structure of the prokaryotic enzyme, the yeast methionine aminopeptidase consists of two functional domains: a unique NH2-terminal domain containing two motifs resembling zinc fingers, which may allow the protein to interact with ribosomes, and a catalytic COOH-terminal domain resembling other prokaryotic methionine aminopeptidases. Furthermore, unlike the case for the prokaryotic gene, the deletion of the yeast MAP1 gene is not lethal, suggesting for the first time that alternative NH2-terminal processing pathway(s) exist for cleaving methionine from nascent polypeptide chains in eukaryotic cells.  相似文献   

20.
The 12.6-kDa FK506-binding protein (FKBP12.6) interacts with the cardiac ryanodine receptor (RyR2) and modulates its channel function. However, the molecular basis of FKBP12.6-RyR2 interaction is poorly understood. To investigate the significance of the isoleucine-proline (residues 2427-2428) dipeptide epitope, which is thought to form an essential part of the FKBP12.6 binding site in RyR2, we generated single and double mutants, P2428Q, I2427E/P2428A, and P2428A/L2429E, expressed them in HEK293 cells, and assessed their ability to bind GST-FKBP12.6. None of these mutations abolished GST-FKBP12.6 binding, indicating that this isoleucine-proline motif is unlikely to form the core of the FKBP12.6 binding site in RyR2. To systematically define the molecular determinants of FKBP12.6 binding, we constructed a series of internal and NH(2)- and COOH-terminal deletion mutants of RyR2 and examined the effect of these deletions on GST-FKBP12.6 binding. These deletion analyses revealed that the first 305 NH(2)-terminal residues and COOH-terminal residues 1937-4967 are not essential for GST-FKBP12.6 binding, whereas multiple sequences within a large region between residues 305 and 1937 are required for GST-FKBP12.6 interaction. Furthermore, an NH(2)-terminal fragment containing the first 1937 residues is sufficient for GST-FKBP12.6 binding. Co-expression of overlapping NH(2) and COOH-terminal fragments covering the entire sequence of RyR2 produced functional channels but did not restore GST-FKBP12.6 binding. These data suggest that FKBP12.6 binding is likely to be conformationdependent. Binding of FKBP12.6 to the NH(2)-terminal domain may play a role in stabilizing the conformation of this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号