首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Ascorbic acid (vitamin C) is an abundant component of plants. It reaches a concentration of over 20 mM in chloroplasts and occurs in all cell compartments, including the cell wall. It has proposed functions in photosynthesis as an enzyme cofactor (including synthesis of ethylene, gibberellins and anthocyanins) and in control of cell growth. A biosynthetic pathway via GDP-mannose, GDP-L-galactose, L-galactose, and L-galactono-1,4-lactone has been proposed only recently and is supported by molecular genetic evidence from the ascorbate-deficient vtcl mutant of Arabidopsis thaliana. Other pathways via uronic acids could provide minor sources of ascorbate. Ascorbate, at least in some species, is a precursor of tartrate and oxalate. It has a major role in photosynthesis, acting in the Mehler peroxidase reaction with ascorbate peroxidase to regulate the redox state of photosynthetic electron carriers and as a cofactor for violaxanthin de-epoxidase, an enzyme involved in xanthophyll cycle-mediated photoprotection. The hypersensitivity of some of the vtc mutants to ozone and UV-B radiation, the rapid response of ascorbate peroxidase expression to (photo)-oxidative stress, and the properties of transgenic plants with altered ascorbate peroxidase activity all support an important antioxidative role for ascorbate. In relation to cell growth, ascorbate is a cofactor for prolyl hydroxylase that posttranslationally hydroxylates proline residues in cell wall hydroxyproline-rich glycoproteins required for cell division and expansion. Additionally, high ascorbate oxidase activity in the cell wall is correlated with areas of rapid cell expansion. It remains to be determined if this is a causal relationship and, if so, what is the mechanism. Identification of the biosynthetic pathway now opens the way to manipulating ascorbate biosynthesis in plants, and, along with the vtc mutants, this should contribute to a deeper understanding of the proposed functions of this multifacetted molecule.  相似文献   

2.
BOTANICAL BRIEFING: The Function and Metabolism of Ascorbic Acid in Plants   总被引:2,自引:0,他引:2  
Ascorbate is a major metabolite in plants. It is an antioxidantand, in association with other components of the antioxidantsystem, protects plants against oxidative damage resulting fromaerobic metabolism, photosynthesis and a range of pollutants.Recent approaches, using mutants and transgenic plants, areproviding evidence for a key role for the ascorbate–glutathionecycle in protecting plants against oxidative stress. Ascorbateis also a cofactor for some hydroxylase enzymes (e.g. prolylhydroxylase) and violaxanthin de-epoxidase. The latter enzymelinks ascorbate to the photoprotective xanthophyll cycle. Arole in regulating photosynthetic electron transport has beenproposed. The biosynthetic pathway of ascorbate in plants hasnot been identified and evidence for the proposed pathways isreviewed. Ascorbate occurs in the cell wall where it is a firstline of defence against ozone. Cell wall ascorbate and cellwall-localized ascorbate oxidase (AO) have been implicated incontrol of growth. High AO activity is associated with rapidlyexpanding cells and a model which links wall ascorbate and ascorbateoxidase to cell wall extensibility is presented. Ascorbate hasalso been implicated in regulation of cell division by influencingprogression from G1 to S phase of the cell cycle. There is aneed to increase our understanding of this enigmatic moleculesince it could be involved in a wide range of important functionsfrom antioxidant defence and photosynthesis to growth regulation. Ascorbic acid; ascorbate oxidase; cell division; cell wall; growth; oxidative stress; photosynthesis; ozone; vitamin C  相似文献   

3.
抗坏血酸是水溶性抗氧化有机小分子,在植物中广泛存在,并可作为某些氧化还原酶的辅酶。本文主要综述了抗坏血酸在植物中的合成、转运和所参与的多种生理作用,如细胞周期调控、成花诱导、光合结构保护、碳代谢和胁迫响应等,并对今后植物中抗坏血酸的相关研究提出展望。  相似文献   

4.
5.
6.
Ascorbic Acid in Neural Tissues   总被引:5,自引:4,他引:1  
Abstract: Large amounts of ascorbic acid were readily removed from neural tissue by washing with warmed saline solutions. In areas where the original level was highest, such as cortex and cerebellum, a higher percentage was removed than from areas of lower concentration, such as pons-medulla. The residual level in both types of tissue was similar. During scurvy, the ascorbic acid retained in the guinea pig brain is more readily removed by washing than is that of the normal brain.  相似文献   

7.
8.
9.
Uncouplers of Spinach Chloroplast Photosynthetic Phosphorylation   总被引:15,自引:25,他引:15       下载免费PDF全文
  相似文献   

10.
11.
12.
13.
14.
高等植物中维生素C 的功能、合成及代谢研究进展   总被引:1,自引:0,他引:1  
植物体内合成的维生素C在植物抗氧化和自由基清除、光合作用和光保护、细胞生长和分裂以及一些重要次生代谢物和乙烯的合成等方面具有非常重要的生理功能。维生素C的生物合成途径及其代谢调控的基因工程研究最近取得了突破。  相似文献   

15.
高等植物中维生素C的功能、合成及代谢研究进展   总被引:26,自引:0,他引:26  
植物体内合成的维生素C在植物抗氧化和自由基清除、光合作用和光保护、细胞生长和分裂以及一些重要次生代谢物和乙烯的合成等方面具有非常重要的生理功能.维生素C的生物合成途径及其代谢调控的基因工程研究最近取得了突破.  相似文献   

16.
17.
18.
Ascorbic Acid in Fetal Rat Brain   总被引:2,自引:2,他引:0  
Ascorbic acid in fetal rat brain increases from 374 mg/g on the 15th day of gestation to 710 mg/g by the 20th day and remains at that level until birth. There is an 18% drop from this plateau after birth.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号