首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The chemical forms of Clostridium botulinum 62A and 213B were prepared, and their heat resistances were determined in several heating media, including some low-acid foods. The heat resistance of C. botulinum spores can be manipulated up and down by changing chemical forms between the resistant calcium form and the sensitive hydrogen form. The resistant chemical form of type B spores has about three times the classical PO4 resistance at 235 F (112.8 C). As measured in peas and asparagus, both types of C. botulinum spores came directly from the culture at only a small fraction of the potential heat resistance shown by the same spores when chemically converted to the resistant form. The resistant spore form of both types (62A and 213B), when present in a low-acid food, can be sensitized to heating at the normal pH of the food.  相似文献   

2.
3.
Out of 111 Clostridium difficile strains, 108 produced spores in numbers of more than 10(5)/ml and the remaining three did not produce any spores in brain heart infusion medium. The germination frequency in the medium without lysozyme varied widely from strain to strain, ranging from less than 10(-8) to 10(0), and in 77 of the 108 strains the germination frequency was 10(-5) or less. The spores, when treated with sodium thioglycollate and then inoculated into the medium containing lysozyme, germinated in all of the 108 strains at a frequency of 10(-0.5) or more. The spores of two strains germinated at a frequency of more than 10(-0.5) in all methods. Spores of C. difficile strains were fairly highly heat-resistant; D100C values ranged from 2.5 to 33.5 min.  相似文献   

4.
Clostridium putrefaciens grew well in most media used routinely for culturing anaerobes, but produced spores only on lactose-egg yolk agar. The D80° was 8–14 min, z value was 4°–6° and D γ, 0.16 Mrad. The inhibitory interactions of pH, NaCl, NaNO2 and incubation temperature are described.  相似文献   

5.
6.
The heat resistance and ultrastructural features of spore suspensions prepared from Clostridium thermocellum LQRI, Clostridium thermosulfurogenes 4B, and Clostridium thermohydrosulfuricum 39E were compared as a function of decimal reduction time. The decimal reduction times at 121 degrees C for strains LQRI, 4B, and 39E were 0.5, 2.5, and 11 min. The higher degree of spore heat resistance was associated with a spore architecture displaying a thicker cortex layer. Heat resistance of these spores was proportional to the ratio of spore cortex volume to cytoplasmic volume. These ratios for spores of strains LQRI, 4B, and 39E were 1.4, 1.6, and 6.6, respectively. The extreme heat resistance and autoclavable nature of C. thermohydrosulfuricum spores under routine sterilization procedures is suggested as a common cause of laboratory contamination with pure cultures of thermophilic, saccharide-fermenting anaerobes.  相似文献   

7.
The mechanism(s) of chemical manipulation of the heat resistance of Clostridium perfringens type A spores was studied. Spores were converted to various ionic forms by base-exchange technique and these spores were heated at 95°C. Of the four ionic forms, i.e. Ca2+, Na+, H+ and native, only hydrogen spores appeared to have been rapidly inactivated at this temperature, when survivors were enumerated on the ordinary plating medium. However, the recovery of the survivors was improved when the plating medium was supplemented with lysozyme, and more dramatically when the heated spores were pretreated with alkali followed by plating in the medium containing lysozyme. In contrast to crucial damage to germination, in particular to spore lytic enzyme, no appreciable amount of DPA was released from the heat-damaged H-spores. These results suggest that a germination system is involved in the thermal inactivation of the ionic forms of spores, and that exchangeable cation load plays a role in protection from thermal damage of the germination system within the spore. An enhancement of thermal stability of spore lytic enzyme in the presence of a high concentration of NaCl was consistent with the hypothesis.  相似文献   

8.
9.
Spores of Clostridium perfringens, type A, were given separate or sequential treatments of gamma radiation (0 to 0.7 Mrad) and/or high temperature (93 to 103 degrees C). Prior heating, sufficient to inactivate 40 to 99% of the viable spores, had no effect on the subsequent radiation inactivation rate. Prior irradiation had a sensitizing effect on subsequently heated spores. The degree of sensitization to heat, as measured by thermal inactivation rate, increased with increased radiation pretreatment dose.  相似文献   

10.
Spores of Clostridium perfringens, type A, were given separate or sequential treatments of gamma radiation (0 to 0.7 Mrad) and/or high temperature (93 to 103 degrees C). Prior heating, sufficient to inactivate 40 to 99% of the viable spores, had no effect on the subsequent radiation inactivation rate. Prior irradiation had a sensitizing effect on subsequently heated spores. The degree of sensitization to heat, as measured by thermal inactivation rate, increased with increased radiation pretreatment dose.  相似文献   

11.
The thermal destruction kinetics of Clostridium sordellii spores was studied in this research. Decimal reduction times (D values) for C. sordellii ATCC 9714 spores ranged between 175.60 min for D80 (the D value for spore suspensions treated at 80 °C) and 11.22 min for D95. The thermal resistance (Z) and temperature coefficient (Q10) values of spores were calculated to be as high as 12.59 °C and 6.23, respectively. At 95 °C, the relative thermal death rate and relative thermal death time of C. sordellii ATCC 9714 spores were found to be 0.0085/min and 118 min, respectively, indicating that the death rate of spores was 118 times lower at 95 °C than at 121.1 °C. Heat treatments at up to 85 °C for 120 min failed to cause a 100-fold destruction in spore populations of C. sordellii ATCC 9714. By contrast, spore counts were reduced by 2log10 cycles within 73 min and 23 min at 90 °C and 95 °C, respectively. This is the first published report of thermal inactivation of C. sordellii spores; however, further studies are needed to confirm these results in real food samples.  相似文献   

12.
13.
Mineralization and heat resistance of bacterial spores.   总被引:3,自引:2,他引:3       下载免费PDF全文
The heat resistances of the fully demineralized H-form spores of Bacillus megaterium ATCC 19213, B. subtilis var. niger, and B. stearothermophilus ATCC 7953 were compared with those of vegetative cells and native spores to assess the components of resistance due to the mineral-free spore state, presumably mainly from dehydration of the spore core, and to mineralization. Mineralization greatly increased heat resistance at lower killing temperatures but appeared to have much less effect at higher ones.  相似文献   

14.
The effect of solute concentration on the sensitization of Clostridium perfringens spores to heat by ionizing radiation was investigated. As we have shown previously, spores of C. perfringens treated with gamma radiation are now sensitive to subsequent heat treatments than are spores that receive no radiation treatment. When gamma-irradiated spores were heated in the presence of increasing concentrations of glycerol or sucrose, the heat sensitivity induced by irradiation was progressively decreased. The magnitude of the increase in heat resistance induced by extracellular solutes was greater in gamma-irradiated spores than in nonirradiated spores. Based on these observations, it is proposed that the induction of heat sensitivity in spores by radiation is related to the loss of osmoregulatory or dehydrating mechanisms in irradiated spores.  相似文献   

15.

Background  

Clostridium perfringens type A food poisoning is caused by enterotoxigenic C. perfringens type A isolates that typically possess high spore heat-resistance. The molecular basis for C. perfringens spore heat-resistance remains unknown. In the current study, we investigated the role of small, acid-soluble spore proteins (SASPs) in heat-resistance of spores produced by C. perfringens food poisoning isolates.  相似文献   

16.
Spore formation by Clostridium difficile is a significant obstacle to overcoming hospital-acquired C. difficile-associated disease. Spores are resistant to heat, radiation, chemicals, and antibiotics, making a contaminated environment difficult to clean. To cause disease, however, spores must germinate and grow out as vegetative cells. The germination of C. difficile spores has not been examined in detail. In an effort to understand the germination of C. difficile spores, we characterized the response of C. difficile spores to bile. We found that cholate derivatives and the amino acid glycine act as cogerminants. Deoxycholate, a metabolite of cholate produced by the normal intestinal flora, also induced germination of C. difficile spores but prevented the growth of vegetative C. difficile. A model of resistance to C. difficile colonization mediated by the normal bacterial flora is proposed.  相似文献   

17.
Sporulation of Clostridium botulinum 113B in a complex medium supplemented with certain transition metals (Fe, Mn, Cu, or Zn) at 0.01 to 1.0 mM gave spores that were increased two to sevenfold in their contents of the added metals. The contents of calcium, magnesium, and other metals in the purified spores were relatively unchanged. Inclusion of sodium citrate (3 g/liter) in the medium enhanced metal accumulation and gave consistency in the transition metal contents of independent spore crops. In citrate-supplemented media, C. botulinum formed spores with very high contents of Zn (approximately 1% of the dry weight). Spores containing an increased content of Fe (0.1 to 0.2%) were more susceptible to thermal killing than were native spores or spores containing increased Zn or Mn. The spores formed with added Fe or Cu also appeared less able to repair heat-induced injuries than the spores with added Mn or Zn. Fe-increased spores appeared to germinate and outgrow at a higher frequency than did native and Mn-increased spores. This study shows that C. botulinum spores can be sensitized to increased thermal destruction by incorporation of Fe in the spores.  相似文献   

18.
19.
20.
The effect of solute concentration on the sensitization of Clostridium perfringens spores to heat by ionizing radiation was investigated. As we have shown previously, spores of C. perfringens treated with gamma radiation are now sensitive to subsequent heat treatments than are spores that receive no radiation treatment. When gamma-irradiated spores were heated in the presence of increasing concentrations of glycerol or sucrose, the heat sensitivity induced by irradiation was progressively decreased. The magnitude of the increase in heat resistance induced by extracellular solutes was greater in gamma-irradiated spores than in nonirradiated spores. Based on these observations, it is proposed that the induction of heat sensitivity in spores by radiation is related to the loss of osmoregulatory or dehydrating mechanisms in irradiated spores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号