首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The psbC gene encodes CP43, a component of Photosystem II (PSII) in higher plants, algae, and cyanobacteria. Previous work demonstrated that alteration of an arginine residue occurring at position 305 to serine produced a strain (R305S) with altered PSII activity (Knoepfle, N., Bricker, T. M., and Putnam-Evans, C. (1999) Biochemistry 38, 1582-1588). This strain grew at wild-type rates in complete BG-11 media (480 microM chloride) and evolved oxygen at rates that were 60-70% of the observed wild-type rates. The R305S strain assembled approximately 70-80% of the functional PSII centers contained in the control strain, and these PSII centers were very sensitive to photoinactivation at high light intensities. We recently observed that the R305S mutant exhibited a pronounced chloride effect. When this mutant was grown in media depleted of chloride (30 microM chloride), it exhibited a severely reduced photoautotrophic growth rate. The effect of chloride depletion on the growth rate of the mutant was reversed by the addition of 480 microM bromide to the chloride-depleted BG-11 media. Oxygen evolution rates for the mutant were further depressed to about 22% of that observed in control cells under chloride-limiting conditions. Addition of bromide restored these rates to those observed under chloride-sufficient conditions. The mutant exhibited a significantly lower relative quantum yield for oxygen evolution than did the control strain, and this was exacerbated under chloride-limiting conditions. Fluorescence yield measurements indicated that both the mutant and the control strains assembled fewer PSII reaction centers under chloride-limiting conditions. The reaction centers assembled by the mutant exhibited an enhanced sensitivity to photoinactivation under chloride-limiting conditions, with a t(1/2) of photoinactivation of 2.6 min under chloride-limiting conditions as compared to a t(1/2) of 4.7 min under normal growth conditions. The mutant also exhibited an enhanced stability of its S(2) state and increased number of centers in the S(1) state following dark incubation. These results indicate that the mutant R305S exhibits a defect in its ability to utilize chloride in support of efficient oxygen evolution in PSII. This is the first mutant of this type described in the CP43 protein.  相似文献   

2.
CP43, a component of Photosystem II (PSII) in higher plants, algae and cyanobacteria, is encoded by the psbC gene. Previous work demonstrated that alteration of an arginine residue occurring at position 305 to serine produced a strain (R305S) with altered PSII characteristics including lower oxygen-evolving activity, fewer assembled reaction centers, higher sensitivity to photoinactivation, etc. [Biochemistry 38 (1999) 1582]. Additionally, it was determined that the mutant exhibited an enhanced stability of its S2 state. Recently, we observed a significant chloride effect under chloride-limiting conditions. The mutant essentially lost the ability to grow photoautotrophically, assembled fewer fully functional PSII reaction centers and exhibited a very low rate of oxygen evolution. Thus, the observed phenotype of this mutation is very similar to that observed for the Delta(psb)V mutant, which lacks cytochrome c550 (Biochemistry 37 (1998) 1551). A His-tagged version of the R305S mutant was produced to facilitate the isolation of PSII particles. These particles were analyzed for the presence of cytochrome c550. Reduced minus oxidized difference spectroscopy and chemiluminescence examination of Western blots indicated that cytochrome c550 was absent in these PSII particles. Whole cell extracts from the R305S mutant, however, contained a similar amount of cytochrome c550 to that observed in the control strain. These results indicate that the mutation R305S in CP43 prevents the strong association of cytochrome c550 with the PSII core complex. We hypothesize that this residue is involved in the formation of the binding domain for the cytochrome.  相似文献   

3.
CP 47, a component of photosystem II (PSII) in higher plants, algae and cyanobacteria, is encoded by the psbB gene. Site-specific mutagenesis has been used to alter a portion of the psbB gene encoding the large extrinsic loop E of CP 47 in the cyanobacterium Synechocystis 6803. Alteration of a lysine residue occurring at position 321 to glycine produced a strain with altered PSII activity. This strain grew at wild-type rates in complete BG-11 media (480 µM chloride). However, oxygen evolution rates for this mutant in complete media were only 60% of the observed wild-type rates. Quantum yield measurements at low light intensities indicated that the mutant had 66% of the fully functional PSII centers contained in the control strain. The mutant proved to be extremely sensitive to photoinactivation at high light intensities, exhibiting a 3-fold increase in the rate of photoinactivation. When this mutant was grown in media depleted of chloride (30 µM chloride), it lost the ability to grow photoautotrophically while the control strain exhibited a normal rate of growth. The effect of chloride depletion on the growth rate of the mutant was reversed by the addition of 480 µM bromide to the chloride-depleted BG-11 media. In the presence of glucose, the mutant and control strains grew at comparable rates in either chloride-containing or chloride-depleted media. Oxygen evolution rates for the mutant were further depressed (28% of control rates) under chloride-limiting conditions. Addition of bromide restored these rates to those observed under chloride-sufficient conditions. Measurements of the variable fluorescence yield indicated that the mutant assembled fewer functional centers in the absence of chloride. These results indicate that the mutation K321G in CP 47 affects PSII stability and/or assembly under conditions where chloride is limiting.  相似文献   

4.
Kuntzleman T  Yocum CF 《Biochemistry》2005,44(6):2129-2142
Hydroxylamine and hydroquinone were used to probe the oxidation states of Mn in the oxygen-evolving complex of dark-adapted intact (hydroxylamine) and salt-washed (hydroquinone) photosystem II. These preparations were incubated in the dark for 24 h in the presence of increasing reductant/photosystem II ratios, and the loss of oxygen evolution activity and of Mn(II) was determined for each incubation mixture. Monte Carlo simulations of these data yielded models that provide insight into the structure, reactivity, and oxidation states of the manganese in the oxygen-evolving complex. Specifically, the data support oxidation states of Mn(III)(2)/Mn(IV)(2) for the dark stable S(1) state of the O(2)-evolving complex. Activity and Mn(II) loss data were best modeled by assuming an S(1) --> S(-)(1) conversion of intermediate probability, a S(-)(1) --> S(-)(3) reaction of high probability, and subsequent step(s) of low probability. This model predicts that photosystem II Mn clusters that have undergone an initial reduction step become more reactive toward a second reduction, followed by a slower third reduction step. Analysis of the Mn(II) release parameters used to model the data suggests that the photosystem II manganese cluster consists of three Mn atoms that exhibit a facile reactivity with both reductants, and a single Mn that is reducible but sterically trapped at or near its binding site. Activity assays indicate that intact photosystem II centers reduced to S(-)(1) can evolve oxygen upon illumination, but that these centers are inactive in preparations depleted of the extrinsic 23 and 17 kDa polypeptides. Finally, it was found that a substantial population of the tyrosine D radical is reduced by hydroxylamine, but a smaller population reacts with hydroquinone over the course of a 24 h exposure to the reductant.  相似文献   

5.
Ca2+ and Cl- are obligatory cofactors in photosystem II (PS-II), the oxygen-evolving enzyme of plants. The sites of inhibition in both Ca(2+)- and Cl(-)-depleted PS-II were compared using EPR and flash absorption spectroscopies to follow the extent of the photooxidation of the redox-active tyrosine (TyrZ) and of the primary electron donor chlorophyll (P680) and their subsequent reduction in the dark. The inhibition occurred after formation of the S3 state in Ca(2+)-depleted PS-II. In Cl(-)-depleted photosystem II, the inhibition occurred after formation of the S3 state in about half of the centers and probably after S2TyrZ+ formation in the remaining centers. After the S3 state was formed in Ca(2+)- and Cl(-)-depleted photosystem II, electron transfer from TyrZ to P680 was inhibited. This inhibition is discussed in terms of electrostatic constraints resulting from S3 formation in the absence of Ca2+ and Cl-.  相似文献   

6.
An electron spin-echo envelope modulation study [Tang, X.-S., Diner, B. A., Larsen, B. S., Gilchrist, M. L., Jr., Lorigan, G. A., and Britt, R. D. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 704-708] and a recent Fourier transform infrared study [Noguchi, T., Inoue, Y., and Tang, X.-S. (1999) Biochemistry 38, 10187-10195], both conducted with [(15)N]histidine-labeled photosystem II particles, show that at least one histidine residue coordinates the O(2)-evolving Mn cluster in photosystem II. Evidence obtained from site-directed mutagenesis studies suggests that one of these residues may be His332 of the D1 polypeptide. The mutation D1-H332E is of particular interest because cells of the cyanobacterium Synechocystis sp. PCC 6803 that contain this mutation evolve no O(2) but appear to assemble Mn clusters in nearly all photosystem II reaction centers [Chu, H.-A., Nguyen, A. P. , and Debus, R. J. (1995) Biochemistry 34, 5859-5882]. Photosystem II particles isolated from the Synechocystis D1-H332E mutant are characterized in this study. Intact D1-H332E photosystem II particles exhibit an altered S(2) state multiline EPR signal that has more hyperfine lines and narrower splittings than the S(2) state multiline EPR signal observed in wild-type PSII particles. However, the quantum yield for oxidizing the S(1) state Mn cluster is very low, corresponding to an 8000-fold slowing of the rate of Mn oxidation by Y(Z)(*), and the temperature threshold for forming the S(2) state is approximately 100 K higher than in wild-type PSII preparations. Furthermore, the D1-H332E PSII particles are unable to advance beyond the Y(Z)(*)S(2) state, as shown by the accumulation of a narrow "split" EPR signal under multiple turnover conditions. In Mn-depleted photosystem II particles, charge recombination between Q(A)(*)(-) and Y(Z)(*) in D1-H332E is accelerated in comparison to wild-type, showing that the mutation alters the redox properties of Y(Z) in addition to those of the Mn cluster. These results are consistent with D1-His332 being located near the Mn-Y(Z) complex and perhaps ligating Mn.  相似文献   

7.
Phosphatidylglycerol (PG), a ubiquitous constituent of thylakoid membranes of chloroplasts and cyanobacteria, is demonstrated to be essential for the functionality of plastoquinone electron acceptor Q(B) in the photosystem II reaction center of oxygenic photosynthesis. Growth of the pgsA mutant cells of Synechocystis sp. PCC6803 that are defective in phosphatidylglycerolphosphate synthase and are incapable of synthesizing PG, in a medium without PG, resulted in a 90% decrease in PG content and a 50% loss of photosynthetic oxygen-evolving activity as reported [Hagio, M., Gombos, Z., Várkonyi, Z., Masamoto, K., Sato, N., Tsuzuki, M., and Wada, H. (2000) Plant Physiol. 124, 795-804]. We have studied each step of the electron transport in photosystem II of the pgsA mutant to clarify the functional site of PG. Accumulation of Q(A)(-) was indicated by the fast rise of chlorophyll fluorescence yield under continuous and flash illumination. Oxidation of Q(A)(-) by Q(B) plastoquinone was shown to become slow, and Q(A)(-) reoxidation required a few seconds when measured by double flash fluorescence measurements. Thermoluminescence measurements further indicated the accumulation of the S(2)Q(A)(-) state but not of the S(2)Q(B)(-) state following the PG deprivation. These results suggest that the function of Q(B) plastoquinone was inactivated by the PG deprivation. We assume that PG is an indispensable component of the photosystem II reaction center complex to maintain the structural integrity of the Q(B)-binding site. These findings provide the first clear identification of a specific functional site of PG in the photosynthetic reaction center.  相似文献   

8.
Clarke SM  Eaton-Rye JJ 《Biochemistry》1999,38(9):2707-2715
The deletion of the amino acids between Gly-351 and Thr-365 within the large, lumen-exposed, hydrophilic region (loop E) of the photosystem II (PSII) chlorophyll a-binding protein CP47 produced a strain of Synechocystis sp. PCC 6803 that failed to assemble stable PSII centers [Eaton-Rye, J. J., and Vermaas, W. F. J. (1991) Plant Mol. Biol. 17, 1165-1177]. The importance of two conserved Phe residues at positions 362 and 363 within this deletion has been investigated. The F363R strain had impaired photoautotrophic growth and an enhanced sensitivity to photoinactivation, demonstrating that Phe is required at position 363 for normal PSII function. In contrast, photoautotrophic growth in strains N361K and F362R was unaffected. Uniquely, among the mutant strains tested, F363R was unable to grow under chloride-limiting conditions, and this effect was reversed by replacing chloride with bromide. The removal of the manganese-stabilizing protein (PSII-O), the 12 kDa extrinsic protein (PSII-U), and cytochrome c-550 (PSII-V) was investigated in each mutant in vivo. In N361K and F362R, removal of PSII-V produced a more deleterious effect than the removal of PSII-O, but even so, all strains remained photoautotrophic. In contrast, the absence of PSII-V and PSII-O in F363R produced obligate photoheterotrophic strains. The removal of PSII-U increased the susceptibility of PSII to heat inactivation and further decreased the stability of PSII in F363R, demonstrating that PSII-U can contribute to the stabilization of mutations that have been introduced into CP47. The order of importance of the selective removal of the extrinsic proteins in strains carrying mutations in loop E of CP47 was found to be as follows: DeltaPSII-V >/= DeltaPSII-O > DeltaPSII-U.  相似文献   

9.
During the donor-side photoinhibition of spinach photosystem II, the reaction center D1 protein cross-linked with the antenna chlorophyll binding protein CP43 of photosystem II lacking the oxygen-evolving complex (OEC) subunit proteins. The cross-linking did not occur upon illumination of photosystem II samples that retained the OEC33, nor when OEC33-depleted photosystem II samples were reconstituted with the OEC33 prior to illumination. These results suggest that the D1 protein, CP43 and the OEC33 are located in close proximity at the lumenal side of photosystem II, and that the OEC33 suppresses the unnecessary contact between the D1 protein and CP43. Previously we presented data showing the D1 protein located adjacent to CP43 on the stromal side of photosystem II [Ishikawa et al. (1999) BIOCHIM: Biophys. Acta 1413: 147]. The present data suggest that the spatial arrangement of the D1 protein and CP43 at the lumenal side of photosystem II in spinach chloroplasts is similar to that at the stromal side of photosystem II and is consistent with the assignment of these proteins recently proposed on the crystal structures of the photosystem II complexes from cyanobacteria [Zouni et al. (2001) Nature 409: 739, Kamiya and Shen 2003 PROC: Natl. Acad. Sci. USA, 100: 98]. Moreover, the data suggest that the binding condition and positioning of the OEC33 in the photosystem II complex from higher plants may be different from those in cyanobacteria.  相似文献   

10.
The supramolecular organization of photosystem II (PSII) was characterized in distinct domains of the thylakoid membrane, the grana core, the grana margins, the stroma lamellae, and the so-called Y100 fraction. PSII supercomplexes, PSII core dimers, PSII core monomers, PSII core monomers lacking the CP43 subunit, and PSII reaction centers were resolved and quantified by blue native PAGE, SDS-PAGE for the second dimension, and immunoanalysis of the D1 protein. Dimeric PSII (PSII supercomplexes and PSII core dimers) dominate in the core part of the thylakoid granum, whereas the monomeric PSII prevails in the stroma lamellae. Considerable amounts of PSII monomers lacking the CP43 protein and PSII reaction centers (D1-D2-cytochrome b559 complex) were found in the stroma lamellae. Our quantitative picture of the supramolecular composition of PSII, which is totally different between different domains of the thylakoid membrane, is discussed with respect to the function of PSII in each fraction. Steady state electron transfer, flash-induced fluorescence decay, and EPR analysis revealed that nearly all of the dimeric forms represent oxygen-evolving PSII centers. PSII core monomers were heterogeneous, and a large fraction did not evolve oxygen. PSII monomers without the CP43 protein and PSII reaction centers showed no oxygen-evolving activity.  相似文献   

11.
In the current X-ray crystallographic structural models of photosystem II, Glu354 of the CP43 polypeptide is the only amino acid ligand of the oxygen-evolving Mn(4)Ca cluster that is not provided by the D1 polypeptide. To further explore the influence of this structurally unique residue on the properties of the Mn(4)Ca cluster, the CP43-E354Q mutant of the cyanobacterium Synechocystis sp. PCC 6803 was characterized with a variety of biophysical and spectroscopic methods, including polarography, EPR, X-ray absorption, FTIR, and mass spectrometry. The kinetics of oxygen release in the mutant were essentially unchanged from those in wild type. In addition, the oxygen flash yields exhibited normal period four oscillations having normal S state parameters, although the yields were lower, correlating with the mutant's lower steady-state rate (approximately 20% compared to wild type). Experiments conducted with H(2)(18)O showed that the fast and slow phases of substrate water exchange in CP43-E354Q thylakoid membranes were accelerated 8.5- and 1.8-fold, respectively, in the S(3) state compared to wild type. Purified oxygen-evolving CP43-E354Q PSII core complexes exhibited a slightly altered S(1) state Mn-EXAFS spectrum, a slightly altered S(2) state multiline EPR signal, a substantially altered S(2)-minus-S(1) FTIR difference spectrum, and an unusually long lifetime for the S(2) state (>10 h) in a substantial fraction of reaction centers. In contrast, the S(2) state Mn-EXAFS spectrum was nearly indistinguishable from that of wild type. The S(2)-minus-S(1) FTIR difference spectrum showed alterations throughout the amide and carboxylate stretching regions. Global labeling with (15)N and specific labeling with l-[1-(13)C]alanine revealed that the mutation perturbs both amide II and carboxylate stretching modes and shifts the symmetric carboxylate stretching modes of the α-COO(-) group of D1-Ala344 (the C-terminus of the D1 polypeptide) to higher frequencies by 3-4 cm(-1) in both the S(1) and S(2) states. The EPR and FTIR data implied that 76-82% of CP43-E354Q PSII centers can achieve the S(2) state and that most of these can achieve the S(3) state, but no evidence for advancement beyond the S(3) state was observed in the FTIR data, at least not in a majority of PSII centers. Although the X-ray absorption and EPR data showed that the CP43-E354Q mutation only subtly perturbs the structure and spin state of the Mn(4)Ca cluster in the S(2) state, the FTIR and H(2)(18)O exchange data show that the mutation strongly influences other properties of the Mn(4)Ca cluster, altering the response of numerous carboxylate and amide groups to the increased positive charge that develops on the cluster during the S(1) to S(2) transition and weakening the binding of both substrate water molecules (or water-derived ligands), especially the one that exchanges rapidly in the S(3) state. The FTIR data provide evidence that CP43-Glu354 coordinates to the Mn(4)Ca cluster in the S(1) state as a bridging ligand between two metal ions but provide no compelling evidence that this residue changes its coordination mode during the S(1) to S(2) transition. The H(2)(18)O exchange data provide evidence that CP43-Glu354 interacts with the Mn ion that ligates the substrate water molecule (or water-derived ligand) that is in rapid exchange in the S(3) state.  相似文献   

12.
Kulik LV  Lubitz W  Messinger J 《Biochemistry》2005,44(26):9368-9374
The temperature dependence of the electron spin-lattice relaxation time T1 was measured for the S0 state of the oxygen-evolving complex (OEC) in photosystem II and for two dinuclear manganese model complexes by pulse EPR using the inversion-recovery method. For [Mn(III)Mn(IV)(mu-O)2 bipy4]ClO4, the Raman relaxation process dominates at temperatures below 50 K. In contrast, Orbach type relaxation was found for [Mn(II)Mn(III)(mu-OH)(mu-piv)2(Me3 tacn)2](ClO4)2 between 4.3 and 9 K. For the latter complex, an energy separation of 24.7-28.0 cm(-1) between the ground and the first excited electronic state was determined. In the S0 state of photosystem II, the T1 relaxation times were measured in the range of 4.3-6.5 K. A comparison with the relaxation data (rate and pre-exponential factor) of the two model complexes and of the S2 state of photosystem II indicates that the Orbach relaxation process is dominant for the S0 state and that its first excited state lies 21.7 +/- 0.4 cm(-1) above its ground state. The results are discussed with respect to the structure of the OEC in photosystem II.  相似文献   

13.
W D Frasch  R Mei 《Biochemistry》1987,26(23):7321-7325
The evolution of O2 from H2O2 catalyzed by the oxygen-evolving complex (OEC) in darkness was examined with photosystem II reaction center complex preparations from spinach. Flash illumination of dark-adapted reaction centers was used to make S0-enriched or S1-enriched complexes. The membranes catalyzed O2 evolution from H2O2 when preset to either the S0 or S1 state. However, only the S0-state reaction was inhibited by carbonyl cyanide m-chlorophenylhydrazone and dependent on chloride. These results indicate that (1) the S0-dependent and S1-dependent catalytic cycles can be separated by flash illumination, (2) the S0-dependent reaction involves the formation of the S2 state, and (3) the S1-dependent reaction does not involve the formation of the S2 or S3 states. A kinetic study of the S1-dependent reaction revealed a rapid equilibrium ordered mechanism in which (1) the binding of Ca(II) must precede the binding of H2O2 to the OEC and (2) the reaction of Ca(II) with the free enzyme is at thermodynamic equilibrium such that Ca(II) does not necessarily dissociate after each catalytic cycle.  相似文献   

14.
A Mn-containing enzyme complex is involved in the oxidation of H2O to O2 in algae and higher plants. X-ray absorption spectroscopy is well suited for studying the structure and function of Mn in this enzyme complex. Results of X-ray K-edge and extended X-ray absorption fine structure (EXAFS) studies of Mn in the S1 and S2 states of the photosynthetic O2-evolving complex in photosystem II preparations from spinach are presented in this paper. The S2 state was prepared by illumination at 190 K or by illumination at 277 K in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU); these are protocols that limit the photosystem II reaction center to one turnover. Both methods produce an S2 state characterized by a multiline electron paramagnetic resonance (EPR) signal. An additional protocol, illumination at 140 K, produces as a state characterized by the g = 4.1 EPR signal. We have previously observed a shift to higher energy in the X-ray absorption K-edge energy of Mn upon advancement from the dark-adapted S1 state to the S2 state produced by illumination at 190 K [Goodin, D. B., Yachandra, V. K., Britt, R. D., Sauer, K., & Klein, M. P. (1984) Biochim. Biophys. Acta 767, 209-216]. The Mn K-edge spectrum of the 277 K illuminated sample is similar to that produced at 190 K, indicating that the S2 state is similar when produced at 190 or 277 K.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Interfering RNA was used to suppress the expression of two genes that encode the manganese-stabilizing protein of photosystem II in Arabidopsis thaliana, MSP-1 (encoded by psbO-1, At5g66570), and MSP-2 (encoded by psbO-2, At3g50820). A phenotypic series of transgenic plants was recovered that expressed high, intermediate, and low amounts of these two manganese-stabilizing proteins. Chlorophyll fluorescence induction and decay analyses were performed. Decreasing amounts of expressed protein led to the progressive loss of variable fluorescence and a marked decrease in the fluorescence quantum yield (F(v)/F(m)) in both the absence and the presence of dichloromethylurea. This result indicated that the amount of functional photosystem II reaction centers was compromised in the plants that exhibited intermediate and low amounts of the manganese-stabilizing proteins. An analysis of the decay of the variable fluorescence in the presence of dichlorophenyldimethylurea indicated that charge recombination between Q ((A-)) and the S(2) state of the oxygen-evolving complex was seriously retarded in the plants that expressed low amounts of the manganese stabilizing proteins. This may have indicated a stabilization of the S(2) state in the absence of the extrinsic component. Immunological analysis of the photosystem II protein complement indicated that significant losses of the CP47, CP43, and D1 proteins occurred upon the loss of the manganese-stabilizing proteins. This indicated that these extrinsic proteins were required for photosystem II core assembly/stability. Additionally, although the quantity of the 24-kDa extrinsic protein was only modestly affected by the loss of the manganese-stabilizing proteins, the 17-kDa extrinsic protein dramatically decreased. The control proteins ribulose bisphosphate carboxylase and cytochrome f were not affected by the loss of the manganese-stabilizing proteins; the photosystem I PsaB protein, however, was significantly reduced in the low expressing transgenic plants. Finally, it was determined that the transgenic plants that expressed low amounts of the manganese-stabilizing proteins could not grow photoautotrophically.  相似文献   

16.
Kufryk GI  Vermaas WF 《Biochemistry》2001,40(31):9247-9255
Mutation of Glu69 to Gln in the D2 protein of photosystem II is known to lead to a loss of photoautotrophic growth in Synechocystis sp. PCC 6803. However, second-site mutants (pseudorevertants) with restored photoautotrophic growth but still maintaining the E69Q mutation in D2 are easily obtained. Using a genomic mapping technique involving functional complementation, the secondary mutation was mapped to slr0286 in two independent mutants. The mutations in Slr0286 were R42M or R394H. To study the function of Slr0286, mutants of E69Q and of the wild-type strain were made that lacked slr0286. Deletion of slr0286 did not affect photoautotrophic capacity in wild type but led to a marked decrease in the apparent affinity of Ca(2+) to its binding site at the water-splitting system of photosystem II and to a reduced heat tolerance of the oxygen-evolving system, particularly in E69Q. Moreover, a small increase in the half-time for photoactivation of the oxygen-evolving complex of photosystem II for both wild type and the E69Q mutant was observed in the absence of Slr0286. The accumulation of photosystem II reaction centers, dark stability of the oxygen-evolving apparatus, stability of oxygen evolution, and the kinetics of charge recombination between Q(A)(-) and the donor side were not affected by deletion of slr0286. Slr0286 lacks clear functional motifs, and no homologues are apparent in other organisms, even not in other cyanobacteria. In any case, Slr0286 appears to help the functional assembly and stability of the water-splitting system of photosystem II.  相似文献   

17.
The manganese cluster of the oxygen-evolving enzyme of photosystem II is chemically reduced upon interaction with nitric oxide at -30 degrees C. The state formed gives rise to an S = 1/2 multiline EPR signal [Goussias, Ch., Ioannidis, N., and Petrouleas, V. (1997) Biochemistry 36, 9261] that is attributed to a Mn(II)- Mn(III) dimer [Sarrou, J., Ioannidis, N., Deligiannakis, Y., and Petrouleas, V. (1998) Biochemistry 37, 3581]. In this work, we sought to establish whether the state could be assigned to a specific, reduced S state by using flash oxymetry, chlorophyll a fluorescence, and electron paramagnetic resonance spectroscopy. With the Joliot-type O(2) electrode, the first maximum of oxygen evolution was observed on the sixth or seventh flash. Three saturating pre-flashes were required to convert the flash pattern characteristic of NO-reduced samples to that of the untreated control (i.e., O(2) evolution maximum on the third flash). Measurements of the S state-dependent level of chlorophyll fluorescence in NO-treated PSII showed a three-flash downshift compared to untreated controls. In the EPR study, the maximum S(2) multi-line EPR signal was observed after the fourth flash. The results from all three methods are consistent with the Mn cluster being in a redox state corresponding to an S(-2) state in a majority of centers after treatment with NO. We were unable to generate the Mn(II)-Mn(III) multi-line signal using hydrazine as a reductant; it appears that the valence distribution and possibly the structure of the Mn cluster in the S(-2) state are dependent on the nature of the reductant that is used.  相似文献   

18.
The g = 4 and g = 2 multiline EPR signals arising from the Mn cluster of the photosynthetic oxygen-evolving complex (OEC) in the S2 state were studied in preparations of oriented photosystem II (PSII) membranes. The ammonia-modified forms of these two signals were also examined. The g = 4 signal obtained in oriented PSII membranes treated with NH4Cl at pH 7.5 displays at least 16 partially resolved Mn hyperfine transitions with a regular spacing of 36 G [Kim, D.H., Britt, R.D., Klein, M.P., & Sauer, K. (1990) J. Am. Chem. Soc. 112, 9389-9391]. The observation of this g = 4 "multiline signal" provides strong spectral evidence for a tetranuclear Mn origin for the g = 4 signal and is strongly suggestive of a model in which different spin state configurations of a single exchange-coupled Mn cluster give rise to the g = 4 and g = 2 multiline signals. A simulation shows the observed spectrum to be consistent with an S = 3/2 or S = 5/2 state of a tetranuclear Mn complex. The resolution of hyperfine structure on the NH3-modified g = 4 signal is strongly dependent on sample orientation, with no resolved hyperfine structure when the membrane normal is oriented perpendicular to the applied magnetic field. The dramatic NH3-induced changes in the g = 4 signal resolved in the spectra of oriented samples are suggestive that NH3 binding at the Cl- site of the OEC may represent direct coordination of NH3 to the Mn cluster.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
CP47 is a pigment-protein complex in the core of photosystem II that tranfers excitation energy to the reaction center. Here we report on a spectroscopic investigation of the isolated CP47 complex. By deconvoluting the 77 K absorption and linear dichroism, red-most states at 683 and 690 nm have been identified with oscillator strengths corresponding to approximately 3 and approximately 1 chlorophyll, respectively. Both states contribute to the 4 K emission, and the Stark spectrum shows that they have a large value for the difference polarizability between their ground and excited states. From site-selective polarized triplet-minus-singlet spectra, an excitonic origin for the 683 nm state was found. The red shift of the 690 nm state is most probably due to strong hydrogen bonding to a protein ligand, as follows from the position of the stretch frequency of the chlorophyll 13(1) keto group (1633 cm(-)(1)) in the fluorescence line narrowing spectrum at 4 K upon red-most excitation. We discuss how the 683 and 690 nm states may be linked to specific chlorophylls in the crystal structure [Zouni, A., Witt, H.-T., Kern, J., Fromme, P., Krauss, N., Saenger, W., and Orth, P. (2001) Nature 409, 739-743].  相似文献   

20.
We have applied flash-induced FTIR spectroscopy to study structural changes upon the S(2)-to-S(3) state transition of the oxygen-evolving complex (OEC) in Photosystem II (PSII). We found that several modes in the difference IR spectrum are associated with bond rearrangements induced by the second laser flash. Most of these IR modes are absent in spectra of S(2)/S(1), of the acceptor-side non-heme ion, of Yradical(D)/Y(D) and of S(3)'/S(2)' from Ca-depleted PSII preparations. Our results suggest that these IR modes most likely originate from structural changes in the oxygen-evolving complex itself upon the S(2)-to-S(3) state transition in PSII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号