首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Neuroblastoma cells in culture contain low levels of cyclic AMP, a second messenger which plays a major role in neuronal maturation. In this study, human neuroblastoma cells, SK-N-SH-SY5Y, were induced to differentiate by treatment with either nerve growth factor (50 ng/ml), retinoic acid (10 microM), dibutyryl cyclic AMP (1 mM), or 12-O-tetradecanoylphorbol-13-acetate (0.1 microM), and the ability of several neurotransmitters or hormones to stimulate adenylyl cyclase was tested. Although all four differentiation factors caused morphological changes towards a neuronal phenotype, only retinoic acid dramatically enhanced cyclic AMP accumulation, specifically upon stimulation with prostaglandin E1 (PGE1). PGE2 was also active, but less potent, than PGE1, whereas the other cyclic AMP-stimulating agents tested were largely unaffected. Further, the rapid desensitization of the PGE1-cyclic AMP response observed in control cells after 20 min of PGE1 exposure did not occur in retinoic acid-treated cells, and the EC50 values for PGE1 were reduced from approximately 240 to 14 nM after retinoic acid treatment. The increased sensitivity to PGE was associated with an increase of high-affinity PGE1 binding sites, whereas the Gs coupling proteins and adenylyl cyclase were not measurably affected. A similar enhancement of the PGE1-cyclic AMP response by retinoic acid was also observed in two additional human neuroblastoma cell lines tested, Kelly and IMR-32, suggesting that up-regulation of the prostaglandin response by retinoic acid is common among neuroblastoma cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Previous work has shown that stimulation of muscarinic receptors in various cell lines increases intracellular cyclic AMP (cAMP) levels. This unusual response has been hypothesized to be mediated by stimulation of calcium/calmodulin-sensitive adenylate cyclase, secondary to inositol trisphosphate (IP3)-mediated calcium mobilization. To test this hypothesis, we stimulated muscarinic receptors in SK-N-SH human neuroblastoma cells while blocking the IP3-mediated rise in intracellular calcium concentration using two different methods. Loading cells with the intracellular calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) abolished the carbachol-mediated intracellular calcium release without abolishing the carbachol-mediated increase in cAMP level. Similarly, in cells preexposed to carbachol, the agonist-induced change in intracellular calcium level was blocked, but the cAMP response was not. Thus, both of these methods failed to block the muscarinic receptor-mediated increase in cAMP level, thereby demonstrating that this cAMP level increase is not mediated by a detectable rise in intracellular calcium concentration.  相似文献   

4.
The possibility that an increased intracellular concentration of cyclic AMP (cAMP) can regulate the extent of muscarinic receptor-stimulated phosphoinositide (PPI) turnover in the human neuroblastoma cell line SK-N-SH was examined. Addition of either forskolin (or its water-soluble analog, L-85,8051), theophylline, isobutylmethylxanthine, or cholera toxin, agents that interact with either the catalytic unit of adenylate cyclase, cAMP phosphodiesterase, or the guanine nucleotide binding protein linked to adenylate cyclase activation, resulted in a 45-181% increase in cAMP concentration and a 27-70% inhibition of carbachol-stimulated inositol phosphate release. Through the use of digitonin-permeabilized cells, the site of inhibition was localized to a step at, or distal to, the guanine nucleotide binding protein that regulates phospholipase C activity. In contrast, when intact SK-N-SH cells were exposed to prostaglandin E1, the ensuing increases in cAMP were not accompanied by an inhibition of stimulated PPI turnover. These differential effects of increased cAMP concentrations on stimulated PPI turnover may reflect the compartmentation of cAMP within SK-N-SH cells.  相似文献   

5.
Intact LM cells, a line of cultured mouse fibroblasts, exhibited and adenylate cyclase (APT pyrophosphate-lyase (cyclizing), EC 4.6.1.1) activity in the presence exogenous [α-32]ATP which was 20–30% of that observed with comparable preparations of lysed cells. The extent of NaF and prostaglandin E1 stimulation was comparable in intact cells and lysed cells. 96% of the added ATP and 92% of the cyclic AMP produced by intact cells could be isolated extracellularly in the incubation medium. Cellular integrity under assay conditions was monitored by trypan blue exclusion. These data suggest that LM cells contain an endenylate cyclase activity whic is accessible to extracellular ATP.  相似文献   

6.
Published experiments both support and contradict the hypothesis that nerve growth factor (NGF) can regulate adenylate cyclase activity. Using a sensitive assay that measures the conversion of [2-3H]adenine to [3H]cyclic AMP, we have shown that NGF alone cannot measurably stimulate cyclic AMP production, whereas the adenosine analog phenylisopropyladenosine (PIA) stimulates adenylate cyclase 20-fold over basal activity. NGF potentiates the capacity of both PIA and cholera toxin to stimulate cyclic AMP accumulation at all concentrations tested. This potentiation occurs at the earliest measurable times and does not require RNA synthesis. Therefore, we conclude that cyclase activation alone does not account for the effect of NGF on cyclic AMP accumulation and we discuss possible mechanisms.  相似文献   

7.
Abstract: Cerebral ischemia and trauma lead to rapid increases in cerebral concentrations of cyclic AMP and dehydroascorbic acid (DHAA; oxidized vitamin C), depletion of intracellular ascorbic acid (AA; reduced vitamin C), and formation of reactive astrocytes. We investigated astrocytic transport of AA and DHAA and the effects of cyclic AMP on these transport systems. Primary cultures of astrocytes accumulated millimolar concentrations of intracellular AA when incubated in medium containing either AA or DHAA. AA uptake was Na+-dependent and inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), whereas DHAA uptake was Na+-independent and DIDS-insensitive. DHAA uptake was inhibited by cytochalasin B, d -glucose, and glucose analogues specific for facilitative hexose transporters. Once inside the cells, DHAA was reduced to AA. DHAA reduction greatly decreased astrocytic glutathione concentration. However, experiments with astrocytes that had been previously depleted of glutathione showed that DHAA reduction does not require physiological concentrations of glutathione. Astrocyte cultures were treated with a permeant analogue of cyclic AMP or forskolin, an activator of adenylyl cyclase, to induce cellular differentiation and thus provide in vitro models of reactive astrocytes. Cyclic AMP stimulated uptake of AA, DHAA, and 2-deoxyglucose. The effects of cyclic AMP required at least 12 h and were inhibited by cycloheximide, consistent with a requirement for de novo protein synthesis. Uptake and reduction of DHAA by astrocytes may be a recycling pathway that contributes to brain AA homeostasis. These results also indicate a role for cyclic AMP in accelerating the clearance and detoxification of DHAA in the brain.  相似文献   

8.
The effects of forskolin (1 microM) and EGTA (5 mM) on indirect cyclic AMP responses in slices of guinea-pig cerebral cortex were examined. Forskolin had little effect on the direct 2-chloroadenosine-stimulated cyclic AMP response. However, it completely abolished the glutamate-induced augmentation of this response. In contrast, forskolin had very little effect on the indirect cyclic AMP responses to noradrenaline, 5-hydroxytryptamine, and histamine. Conversely, rapid removal of extracellular calcium with EGTA 2 min before addition of the indirectly acting agent markedly reduced the augmentation responses produced by these latter agonists, but had little effect on the glutamate augmentation. When EGTA was added once a steady level of cyclic AMP had been achieved with the indirect agents, it was without effect on any of the responses. Thus, calcium appears to have a role in the early, but not the later, stages of the noradrenaline, 5-hydroxytryptamine, and histamine responses. A role for protein kinase C in the glutamate augmentation response was suggested, because forskolin inhibited the augmentation of the 2-chloroadenosine response produced by phorbol esters (which mimic the actions of diacylglycerol in activating protein kinase C). We conclude that there is more than one mechanism by which the augmentation of cyclic AMP responses can occur.  相似文献   

9.
A procedure for isolation of cyclic AMP (cAMP) by thin-layer chromatography on silica gel is described. One-dimensional ascending chromatograms were developed using [H(2)O/C(2)H(5)OH/NH(4)HCO(3) (30%:70%:0.2M)] as the mobile phase. This procedure separated [32P]cAMP from other radioactive metabolites of [32P]ATP in up to 19 samples on one sheet (20 x 10 cm) over 40-60 min at room temperature (21 degrees C). This simple and rapid isolation method provides a novel and convenient technique for the assay of adenylyl cyclase.  相似文献   

10.
Despite the evidence in support, the extent of which is outlined in this review, the occurrence of cyclic AMP in tissues of higher plants has been doubted by a number of previous reviewers. Recent MS and other evidence vindicates earlier identification of an adenosine nucleotide from plant tissues as adenosine 3′:5′-cyclic monophosphate. The additional demonstration of 3′: 5′-cyclic nucleotide phosphodiesterases in higher plants, together with adenylate cyclase, a specific cyclic AMP binding protein, and calmodulin, means that plants possess all the necessary components for a functional cyclic AMP-regulated system. Whether such a system does function in plants is considered as are also the reported physiological effects of exogenously supplied cyclic AMP on plant tissues.  相似文献   

11.
Abstract: We examined the effects of cyclic AMP on dopamine receptor-coupled activation of phosphoinositide hydrolysis in rat striatal slices. Forskolin, dibutyryl cyclic AMP, and the protein kinase A activator Sp -cyclic adenosine monophosphothioate ( Sp -cAMPS) significantly inhibited inositol phosphate formation stimulated by the dopamine D1 receptor agonist SKF 38393. Conversely, the protein kinase A antagonist Rp -cyclic adenosine monophosphothioate ( Rp -cAMPS) dose-dependently potentiated the SKF 38393 effect. In the presence of 200 µ M Rp -cAMPS, the dose-response curves of the dopamine D1 receptor agonists SKF 38393 and fenoldopam were shifted to the left and maximal agonist responses were markedly increased. The agonist EC50 values, however, were not significantly altered by protein kinase A inhibition. Neither Sp -cAMPS nor Rp -cAMPS significantly affected basal inositol phosphate accumulation. These findings demonstrate that dopaminergic stimulation of phosphoinositide hydrolysis is inhibited by elevations in intracellular cyclic AMP. Dopamine receptor agonists that stimulate adenylyl cyclase could suppress their activation of phosphoinositide hydrolysis by concomitantly stimulating the formation of cyclic AMP in striatal tissue. The interaction between dopamine D1 receptor-stimulated elevations in cyclic AMP and dopaminergic stimulation of inositol phosphate formation suggests a cellular colocalization of these dopamine-coupled transduction pathways in at least some cells of the rat striatum.  相似文献   

12.
13.
Abstract: The cyclic AMP (cAMP)-induced inhibitory effect on cell proliferation was examined through inhibition of mitogen-activated protein kinase (MAP kinase) activation in cultured rat cortical astrocytes. Basic fibroblast growth factor (bFGF) at 10 ng/ml maximally stimulated MAP kinase activity, which peaks during 10 min and prolonged for 24 h. Likewise, DNA synthesis was maximally potentiated with 10 ng/ml bFGF and correlated with MAP kinase activity in a dose-dependent manner. Dibutyryl cAMP (dbcAMP) at 1 m M and isoproterenol at 10 µ M inhibited MAP kinase activation and DNA synthesis potentiation with bFGF and platelet-derived growth factor to the control level in cultured astrocytes and C6 glioma cells. The stimulation with bFGF caused a prominent translocation of MAP kinase from the cytosol to the nucleus after 1 h in astrocytes. Treatment of the cells with dbcAMP and isoproterenol completely prevented the translocation of MAP kinase. In experiments with 32P-labeled cultured astrocytes, phosphorylation of Raf-1 was apparently stimulated with bFGF. Treatment with dbcAMP or isoproterenol had a greatly inhibitory effect on the stimulation of Raf-1 phosphorylation with bFGF. Consistent with the effect on Raf-1 phosphorylation, dbcAMP and isoproterenol completely prevented bFGF-induced phosphorylation of MAP kinase kinases, target proteins of Raf-1. Our observations suggest that cAMP-induced suppression of cell growth in astrocytes is due to the inhibitory effect on activation of MAP kinase and its translocation to the nucleus and that the site of the cAMP action is located at Raf-1 or the upstream site of Raf-1.  相似文献   

14.
15.
Abstract: We demonstrated that glutamate increased the cyclic AMP level in cultured neurons from rat spinal cord. A bath application of glutamate (300 µ M ) elicited a rapid increase of the cyclic AMP concentration reaching a level three times as high as the basal level in ∼3 min, and its content then decreased to the control level in 15 min. The increase was not observed in a Ca2+-free medium and was inhibited by an antagonist of NMDA receptors or a voltage-sensitive Ca2+ channel blocker. Preincubation with W7 also inhibited the glutamate-evoked cyclic AMP increase. NMDA, aspartate, and high-K+ conditions also induced a cyclic AMP increase; however, a decreasing phase did not follow. The decreasing phase was observed when (2 S ,1' S ,2' S )-2-(carboxycyclopropyl)-glycine, a potent agonist for metabotropic glutamate receptors, was combined with NMDA. These results suggest that the cyclic AMP increase is mediated by a Ca2+ influx via both NMDA receptors and voltage-sensitive Ca2+ channels followed by an activation of the Ca2+/calmodulin system, and the decreasing phase observed in the case of glutamate exposure is due to the activation of the metabotropic glutamate receptors.  相似文献   

16.
Stimulation of cyclic AMP (cAMP) accumulation in rat cortex slices by 1 microM forskolin (F) was markedly reduced (96%) by treatment with adenosine deaminase (ADA). The effect of ADA was progressively less at higher concentrations of F, but still inhibited the response by 50% at 100 microM F. ADA-mediated inhibition of the cAMP response to 1 microM F was completely reversed by 5 microM 2-chloroadenosine (CA), an ADA-resistant analogue. Stimulation by F (controls) and F plus CA (ADA treated) in cortex slices was significantly inhibited by 200 microM caffeine (CAF) and by 10 microM 8-phenyltheophylline. cAMP accumulation in ADA-treated cortex slices stimulated with CA at concentrations from 5 to 100 microM was markedly enhanced by 1 microM F. Neither ADA treatment nor 200 microM CAF significantly affected cAMP accumulation in slices stimulated by 1 microM vasoactive intestinal polypeptide or adenylate cyclase in membranes stimulated by 1 microM F. CAF (1 mM) did not significantly increase basal cAMP levels in cortex slices, whereas 1 mM 3-isobutyl-1-methylxanthine caused a significant 80% increase and 100 microM rolipram enhanced cAMP levels by 4.5-fold. F-stimulated cAMP accumulation (1 microM) in cortex slices was inhibited 98% by 1 mM CAF and 49% by 1 mM 3-isobutyl-1-methylxanthine, and was enhanced 2.5-fold by 100 microM rolipram. These data have been interpreted to indicate that the stimulation of cAMP accumulation in rat cortex slices by 1 microM F is predominantly due to synergistic interaction with endogenous adenosine and that the inhibition of this response by CAF is largely due to blockade of adenosine receptors.  相似文献   

17.
18.
Treatment of NG108-15 cells in culture with the opiate peptide [D-Ala2,D-Leu5]enkephalin produces maximal inhibition of cyclic AMP synthesis in less than 15 min. The activity of [GM3]:N-acetylgalactosaminyltransferase is similarly inhibited, but maximal inhibition is not observed for at least 30 min following the addition of [D-Ala2,D-Leu5]enkephalin. Conversely, the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine rapidly potentiates the intracellular accumulation of cyclic AMP and, in a more gradual fashion, increases [GM3]:N-acetylgalactosaminyltransferase activity. The reductions in the activity of [GM3]:N-acetylgalactosaminyltransferase that occur following treatment of NG108-15 cells with indomethacin argues for a direct role of cyclic AMP in the observed changed in [GM3]:N-acetylgalactosaminyltransferase activity. By adding low concentrations of cyclic AMP (but not cyclic GMP) to microsomes derived from neonatal rat brain, we were able to demonstrate a dose-dependent phosphorylation of membrane protein and subsequent doubling of [GM3]:N-acetylgalactosaminyltransferase activity.  相似文献   

19.
Abstract: Metabotropic glutamate receptors (mGluRs) in the CNS are coupled to a variety of second messenger systems, the best characterized of which is activation of phosphoinositide hydrolysis. Recently, we found that activation of mGluRs in rat brain slices by the selective mGluR agonist 1-aminocyclopentane-1 S ,3 R -dicarboxylic acid (1 S ,3 R -ACPD) potentiates cyclic AMP (cAMP) responses elicited by activation of other receptors coupled to Gs. It has been suggested that mGluR-mediated potentiation of cAMP responses is secondary to activation of phosphoinositide hydrolysis. However, preliminary evidence suggests that this is not the case. Therefore, we designed a series of experiments to test more fully the hypothesis that mGluR-mediated potentiation of cAMP responses is secondary to phosphoinositide hydrolysis. Inhibitors of both protein kinase C and intracellular calcium mobilization failed to antagonize 1 S ,3 R -ACPD-stimulated potentiation of cAMP responses. Further, coapplication of phorbol esters and 1 S ,3 R -ACPD induced a cAMP response that was greater than additive. Finally, ( RS )-3,5-dihydroxyphenylglycine, a selective agonist of mGluRs coupled to phosphoinositide hydrolysis, failed to potentiate cAMP responses, whereas (2 S ,1' R ,2' R ,3' R )-2-(2,3-dicarboxycyclopropyl)glycine, an mGluR agonist that does not activate mGluRs coupled to phosphoinositide hydrolysis, elicited a robust potentiation of cAMP responses. In total, these data strongly suggest that mGluR-mediated potentiation of cAMP responses is not secondary to activation of phosphoinositide hydrolysis and is likely mediated by a group II mGluR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号