首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma fibronectin (pFn) is a serum protein which, when adsorbed to a glass or plastic substratum, mediates the adhesion of fibroblasts in culture. We have studied some of the details of its adsorption and subsequent fate. By using 125l-labeled pFn, we show that a substratum incubated with pFn adsorbs approximately 0.4 μg/cm2 pFn (a monomolecular layer), and one incubated with medium containing serum adsorbs approximately 7 ng/cm2 pFn (a 12-fold enrichment relative to a random selection of the soluble proteins). SDS-polyacrylamide gel electrophoresis (SDS-PAGE) suggests the bound serum proteins (eluted with SDS) are primarily BSA and β-globulins. The bound pFn adheres so tightly, though, that most resists elution, as assayed (1) with pFn radioiodinated before binding, (2) with pFn radioiodinated after binding, or (3) by the cell spreading activity of the bound pFn retained after SDS treatment. Under culture conditions, there is a continuous “turnover” of substratum-bound pFn: soluble pFn can bind to a serum-coated substratum, while bound pFn is gradually removed by incubation with serum proteins. The presence of fibroblasts increases the rate of this removal several-fold. By SDS-PAGE the material removed (as well as that eluted from the substratum with SDS after cell detachment) is intact pFn or large (possibly proteolytically generated) fragments. Thus, pFn binds preferentially to the tissue culture substratum, but can be removed subsequently by the combined action of cells and other serum proteins.  相似文献   

2.
Cibacron Blue F3GA was covalently attached onto magnetic poly(vinyl alcohol) (mPVAL) beads (100-150 μm in diameter) for human serum albumin (HSA) adsorption from human plasma. Despite low nonspecific adsorption of HSA on mPVAL beads, Cibacron Blue F3GA attachment significantly increased the HSA adsorption. The maximum HSA adsorption was observed at pH 5.0. Higher HSA adsorption was observed from human plasma. Desorption of HSA from mPVAL beads was achieved by medium containing 1.0 M KSCN at pH 8.0. To test the efficiency of albumin adsorption from human serum, before and after albumin adsorption was demonstrated with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analyses. HSA molecules could be reversibly adsorbed and desorbed 10 times with the magnetic beads without noticeable loss in their HSA adsorption capacity.  相似文献   

3.
Toward the development of an in vitro cultivation of marine sponge cells for sustainable production of bioactive metabolites, the attachment characteristics of marine sponge cells of Hymeniacidon perleve on three types of microcarriers, Hillex, Cytodex 3, and glass beads, were studied. Mixed cell population and enriched cell fractions of specific cell types by Ficoll gradient centrifugation (6%/8%/15%/20%) were also assessed. Cell attachment ratio (defined as the ratio of cells attached on microcarrier to the total number of cells in the culture) on glass beads is much higher than that on Cytodex 3 and Hillex for both mixed cell population and cell fraction at Ficoll 15-20% interface. The highest attachment ratio of 41% was obtained for the cell fraction at Ficoll 15-20% interface on glass beads, which was significantly higher than that of a mixed cell population (18%). The attachment kinetics on glass beads indicated that the attachment was completed within 1 h. Cell attachment ratio decreases with increase in cell-to-microcarrier ratio (3-30 cells/bead) and pH (7.6-9.0). The addition of serum and BSA (bovine serum albumin) reduced the cell attachment on glass beads.  相似文献   

4.
How to prevent losses of protein by adsorption to glass and plastic   总被引:2,自引:0,他引:2  
An improved procedure for reducing the loss of protein by adsorption to glass or plastic surfaces is reported. For working with proteins at the microgram level, the solvent is modified by adding glycerol (50% final concentration) or Triton X-100 (0.2 mM final concentration). Coating the plastic or glass surfaces with proteins such as bovine serum albumin or other materials is not as effective; adding proteins such as bovine serum albumin to the solvent is counterproductive.  相似文献   

5.
A bubble contact angle method was used to determine interfacial free-energy characteristics of polystyrene substrata in the presence and absence of potential surface-conditioning proteins (bovine glycoprotein, bovine serum albumin, fatty acid-free bovine serum albumin), a bacterial culture supernatant, and a bacterial exopolymer. Clean petri dish substrata gave a contact angle of 90°, but tissue culture dish substrata were more hydrophilic, giving an angle of 29° or less. Bubble contact angles at the surfaces exposed to the macromolecular solutions varied with the composition and concentration of the solution. Modification by pronase enzymes of the conditioning effect of proteins depended on the nature of both the substratum and the protein, as well as the time of addition of the enzyme relative to the conditioning of the substratum. The effects of dissolved and substratum-adsorbed proteins on the attachment of Pseudomonas sp. strain NCMB 2021 to petri dishes and tissue culture dishes were consistent with changes in bubble contact angles (except when proteins were adsorbed to tissue culture dishes before attachment) as were alterations in protein-induced inhibition of bacterial attachment to petri dishes by treatment with pronase. Differences between the attachment of pseudomonads to petri dishes and tissue culture dishes suggested that different mechanisms of adhesion are involved at the surfaces of these two substrata.  相似文献   

6.
In order to perform a fundamental study of platelet substitutes, novel particles that bound to activated platelets were prepared using two oligopeptides conjugated to latex beads. The oligopeptides were CHHLGGAKQAGDV (H12), which is a fibrinogen gamma-chain carboxy-terminal sequence (gamma 400-411), and CGGRGDF (RGD), which contains a fibrinogen alpha-chain sequence (alpha 95-98 RGDF). Both peptides contained an additional amino-terminal cysteine to enable conjugation. Human serum albumin was adsorbed onto the surface of latex beads (average diameter 1microm) and pyridyldisulfide groups were chemically introduced into the adsorbed protein. H12 or RGD peptides were then chemically linked to the modified surface protein via disulfide linkages. H12- or RGD-conjugated latex beads prepared in this way enhanced the in vitro thrombus formation of activated platelets on collagen-immobilized plates under flowing thrombocytopenic-imitation blood. Based on the result of flow cytometric analyses of agglutination, PAC-1 binding, antiP-selectin antibody binding, and annexin V binding, the H12-conjugated latex beads showed minimal interaction with non-activated platelets. These results indicate the excellent potential of H12-conjugated particles as a candidate for a platelet substitute.  相似文献   

7.
The glass-binding properties of a number of purified glycoproteins capable of promoting attachment and spreading of a variety of types of animal cells in culture have been examined. Two such factors in human serum, fibronectin and serum spreading factor, exhibited strong affinities for glass beads and could be eluted from glass-bead columns under similar conditions. A number of other glycoproteins of human serum that do not promote cell adhesion did not bind to glass beads under conditions that resulted in binding of serum spreading factor or fibronectin. At a sufficiently low ratio of serum volume to glass-bead volume, human serum could be simultaneously depleted of serum spreading factor, fibronectin, and cell spreading-promoting activity by glass-bead affinity chromatography. Laminin, another cell spreading-promoting glycoprotein, possessed glass-binding properties similar to those of serum spreading factor and fibronectin while chondronectin, a fourth cell spreading-promoting factor of more limited specificity of biological activity and distribution in vivo, did not exhibit a strong interaction with glass beads under the same conditions. These observations suggest that glass-bead column affinity chromatography may prove useful as a general method for isolation and study of glycoprotein factors promoting attachment and spreading of cells in culture.  相似文献   

8.
Understanding protein adsorption kinetics to surfaces is of importance for various environmental and biomedical applications. Adsorption of bovine serum albumin to various self-assembled monolayer surfaces including neutral and charged hydrophilic and hydrophobic surfaces was investigated using in-situ combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry. Adsorption of bovine serum albumin varied as a function of surface properties, bovine serum albumin concentration and pH value. Charged surfaces exhibited a greater quantity of bovine serum albumin adsorption, a larger bovine serum albumin layer thickness, and increased density of bovine serum albumin protein compared to neutral surfaces at neutral pH value. The quantity of adsorbed bovine serum albumin protein increased with increasing bovine serum albumin concentration. After equilibrium sorption was reached at pH 7.0, desorption of bovine serum albumin occurred when pH was lowered to 2.0, which is below the isoelectric point of bovine serum albumin. Our data provide further evidence that combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry is a sensitive analytical tool to evaluate attachment and detachment of adsorbed proteins in systems with environmental implications.  相似文献   

9.
Errors in analyzing CD spectra of proteins arising from adsorption loss onto glass surfaces were examined for six proteins: apolipoproteins A-I and E, fibronectin, bovine serum albumin, insulin, and glucagon. Among these, the glycoproteins, apolipoprotein E and fibronectin, adsorbed most onto glass surfaces. Their CD intensities decreased by about 50% when proteins were diluted serially from 1 to 0.01 mg/ml in regular glass-ware and CD was measured in uncoated cells. The other proteins, except glucagon, also showed a certain degree of adsorption. Thus, adsorption loss of proteins onto glass surfaces is common and may lead to serious errors in experimental results. Adsorption can be minimized by using plastic containers and pipet tips, coating the cell with silicone, and wetting the cell before adding the protein solution.  相似文献   

10.
Different biologands carrying synthetic adsorbents have been reported in the literature for protein separation. We have developed a novel and new approach to obtain high protein adsorption capacity utilizing 2-methacrylamidohistidine (MAH) as a bioligand. MAH was synthesized by reacting methacrylochloride and histidine. Spherical beads with an average size of 150–200 μm were obtained by the radical suspension polymerization of MAH and 2-hydroxyethyl-methacrylate (HEMA) conducted in an aqueous dispersion medium. p(HEMA-co-MAH) beads had a specific surface area of 17.6 m2/g. Synthesized MAH monomer was characterized by NMR. p(HEMA-co-MAH) beads were characterized by swelling test, FTIR and elemental analysis. Then, Cu(II) ions were incorporated onto the beads and Cu(II) loading was found to be 0.96 mmol/g. These affinity beads with a swelling ratio of 65%, and containing 1.6 mmol. MAH/g were used in the adsorption/desorption of human serum albumin (HSA) from both aqueous solutions and human serum. The adsorption of HSA onto p(HEMA-co-MAH) was low (8.8 mg/g). Cu(II) chelation onto the beads significantly increased the HSA adsorption (56.3 mg/g). The maximum HSA adsorption was observed at pH 3.0 Higher HSA adsorption was observed from human plasma (94.6 mg HSA/g). Adsorption of other serum proteins were obtained as 3.7 mg/g for fibrinogen and 8.5 mg/g for γ-globulin. The total protein adsorption was determined as 107.1 mg/g. Desorption of HSA was obtained using 0.1 M Tris/HCl buffer containing 0.5M NaSCN. High desorption ratios (up to 98% of the adsorbed HSA) were observed. It was possible to reuse Cu(II) chelated-p(HEMA-co-MAH) beads without significant decreases in the adsorption capacities.  相似文献   

11.
用L-多聚赖氨酸、聚乙烯亚胺及L-多聚鸟氨酸三种多聚阳离子对壳聚糖进行共混修饰,制备了三种共混材料.在这些材料表面吸附了血清白蛋白,并利用圆二色(CD)光谱研究了白蛋白吸附到材料表面后的构象变化.结果显示,与天然状态相比,白蛋白吸附到共混材料表面后,其α-螺旋、β-折叠及无规则卷曲的含量均发生了明显改变.通过研究MC3T3-E1细胞在这些材料表面的生长情况,发现细胞的增殖与血清白蛋白的构象变化有一定关系,在吸附的白蛋白构象与天然构象最接近的共混材料表面,MC3T3-E1细胞增殖水平最高.  相似文献   

12.
13.
Since previous studies reported that in vitro some proteins and phospholipids were absorbed by asbestos fibres, namely chrysotile, in this study, man made filamentous glass fibers are been tested in vitro at the presence of proteins. The objective was to obtain evidence to evaluate whether continuous glass fibers have a behaviour similar to asbestos fibres. A sample of chrysotile fibres was used as control. Uptake of bovine serum albumin and horse spleen ferritin on these continuous glass fibres has been observed. However on glass fibres adsorbed less proteins per weight unit (22 mg/g and 12 mg/g respectively for albumin and ferritin) than asbestos chrysotile fibres (42 mg/g and 49 mg/g respectively for albumin and ferritin).  相似文献   

14.
A new cell culture microcarrier that can be covalently bonded by cell attachment proteins and can be thin-sectioned for electron microscopy was synthesized. It was easily made by sulfonating cross-linked polystyrene beads for a negative surface charge followed by covalent attachment of polyethylenimine for a positive charge. Cell attachment proteins, e.g. collagen, was covalently bonded directly to the microcarrier using a carbodiimide or after activating the microcarrier surface with glutaraldehyde. HeLa-S3 cells attached, spread and grew to confluence more efficiently on the positive microcarriers and those coated with collagen than on the negative ones. Endothelial cells grew best on those with a negative surface charge. The nature of the microcarrier surface was not the only aspect involved in cell adhesion but also the type of serum proteins adsorbed. Qualitatively different proteins coated the microcarriers depending upon whether the carrier was negative, positive or coated with collagen. Comparison of various types of available microcarriers indicated that the modified cross-linked polystyrene beads used here were best for transmission and scanning electron microscopy. Endothelial cells grown on the microcarriers had the same ultrastructure as cells grown in monolayers in culture dishes. Of a variety of microcarriers tested the modified cross-linked polystyrene beads were the only ones that could be used for both ultrastructural and biochemical techniques.  相似文献   

15.
Vitronectin—A major cell attachment-promoting protein in fetal bovine serum   总被引:20,自引:0,他引:20  
Bovine serum is a constituent of most media used for the culture of animal cells. The adhesion-promoting properties of serum are generally attributed to fibronectin, yet there have been frequent reports of other adhesion-promoting molecules in bovine serum. Using a technique in which adhesive proteins are visualized after separation by SDS-PAGE, we graphically confirm the presence of a second cell attachment protein in bovine serum and present the evidence that this molecule is the bovine equivalent of vitronectin. The molecular size of this protein is in the same range as the size of the adhesive human plasma protein, vitronectin. The bovine protein also shared with human vitronectin an affinity for glass, and it could be purified by a combination of glass bead and ion exchange chromatography. The isolated bovine protein had varying proportions of an 80 and a 65 kD polypeptide. It showed immunological cross-reactivity with anti-human vitronectin and with anti-human somatomedin B. Somatomedin B is a serum peptide which has a NH2-terminal sequence identical to that of human vitronectin. The identity of the bovine protein as vitronectin was established by showing that its NH2-terminal amino acid sequence is strongly homologous with those of human vitronectin and somatomedin B. Quantitation of the adhesive activities of fibronectin and vitronectin in bovine plasma and fresh serum showed that more activity is associated with vitronectin than with fibronectin. The preponderance of vitronectin was particularly clear in fetal bovine serum intended for cell culture. In various batches, cell attachment activity attributable to vitronectin was 8-16-fold greater than that of fibronectin, making vitronectin the main adhesive protein in routine cell culture media.  相似文献   

16.
Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) was applied to investigate the interaction of bovine serum albumin (BSA) and fibrinogen with a biomedical-grade 316LVM stainless steel surface, in terms of the adsorption thermodynamics and adsorption-induced secondary structure changes of the proteins. Highly negative apparent Gibbs energy of adsorption values revealed a spontaneous adsorption of both proteins onto the surface, accompanied by significant changes in their secondary structure. It was determined that, at saturated surface coverages, lateral interactions between the adsorbed BSA molecules induced rather extensive secondary structure changes. Fibrinogen's two coiled coils appeared to undergo negligible secondary structure changes upon adsorption of the protein, while large structural rearrangements of the protein's globular domains occurred upon adsorption. The secondary structure of adsorbed fibrinogen was not influenced by lateral interactions between the adsorbed fibrinogen molecules. PM-IRRAS was deemed to be viable for investigating protein adsorption and for obtaining information on adsorption-induced changes in their secondary structures.  相似文献   

17.
Adsorptive loss of human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) in transgenic rice cell suspension cultures was investigated using glass flasks, plastic flasks, disposable vessels, and stainless steel vessels. When hCTLA4Ig was added to the glass flasks containing sterile AA medium, a rapid decrease in the concentration of hCTLA4Ig, independent on pH, was observed resulting in more than 90% of the protein loss within 1 h due to the surface adsorption. When the same experiments were performed on four different types of culture equipments mentioned above, the lowest adsorption level was observed in the plastic flasks and the highest level was observed in the glass flasks. The use of the plastic flasks retarded the adsorptive loss of hCTLA4Ig at the early stage of the protein production. There was a significant increase in the production of hCTLA4Ig when the flasks were coated with bovine serum albumin. However, the spike test of purified hCTLA4Ig at two different concentrations of 15 and 100 mg L−1 in 500-mL spinner flasks confirmed that the amount of hCTLA4Ig adsorbed was dependent on the surface area of the flasks but not on the concentrations. In conclusion, although the protein adsorption affected the total amount of the protein yielded to some extent, it could be regarded as a minor factor in transgenic plant cell cultures with higher titer.  相似文献   

18.
L A Culp 《Biochemistry》1976,15(18):4094-4104
The proteins which have been left tightly bound to the tissue culture substrate after ethylenebis (oxyethyl-enenitrilo) tetraacetic acid (EGTA)-mediated removal of normal, virus-transformed, and revertant mouse cells and which have been implicated in the substrate adhesion process have been analyzed by slab sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Three size classes of hyaluronate proteoglycans were resolved in the 5% well gel; approximately half of the protein in the substrate-attached material coelectrophoresed with these polysaccharides-so-called glycosaminoglycan-associated protein(GAP). A portion of the GAP was shown to be highly heterogeneous and displaced from the polysaccharide by preincubation with calf histone before electrophoresis. The relative proportions of the proteoglycans varied in material deposited during a variety of cellular attachment and growth conditions. The remainder of the cellular protein in substrate-attached material was resolved as several major and distinct protein bands in 8 or 20% separating gels (a limited number of distinct serum proteins have also been identified as substrate bound). Protein C0 (molecular weight 220 000) was a prominent component in the material from a variety of normal and virus-transformed cells and resembled the so-called LETS or CSP glycoprotein in several respects; protein Ca was myosin-like in several respects; protein C2 was shown to be actin; and protein C1 (molecular weight 56 000) does not appear to be tubulin. Histones were also present in most preparations of substrate-attached material, particularly at high levels in transformed cell meterial, and may result from EGTA-mediated leakiness of the cell and subsequent binding to the negatively charged polysaccharide. These substrate-attached proteins were (a) prominent in substrate-attached material from many cell types in characteristic relative proportions, (b) deposited by EGTA-subcultured cells during the first hour of attachment to fresh substrate, (c) deposited by cells growing on plastic or glass substrates (three additional) components were also prominent in glass-attached material), and (d) deposited during long-term growth on or initial attachment to substrates coated wit 3T3 substrate-attached material. Pulse-chase analyses with radioactive leucine indicated that these proteins exhibit different turn-over behaviors. These results are discussed with regard to the possible involvement of these substrate-attached proteins in the substrate adhesion process, with particular interest in the interaction of cytoskeletal microfilaments with other surface membrane components and with regard to alteration of substrate adhesion by virus transformation.  相似文献   

19.
The biological consequences of protein adsorption on biomaterial surfaces are considered to be of utmost importance for their biocompatibility. A new method based on amino group-labeling coupled to a chemiluminescence reaction for direct determination of proteins adsorbed on material surfaces was employed. This method was used to explore the effects of surface chemistry and surface roughness on protein adsorption in a silicon oxide model system. Corundum sandblasting was applied to silicon wafers to create roughened surfaces while immobilization of fluorocarbon-, hydrocarbon-, and poly(ethylene glycol)-containing silanes produced surfaces of varying wettability. The adsorption behavior of two complex body fluids, human serum and saliva, and of two purified components, human serum albumin and fibronectin, was strongly influenced by the surface parameters. A general tendency to higher amounts of adsorbed protein was found on roughened surfaces and modification with poly(ethylene glycol) or with fluorocarbon moieties reduced protein adsorption. The values obtained with the new method could be confirmed by a colorimetric determination of protein amounts adsorbed on identically modified silica beads and were in accordance with those previously reported utilizing established methods for protein quantification. The presented method, which was methodically simple to perform and allowed the simultaneous measurement of a large number of samples, may be of future value for high-throughput surveying of the protein adsorption characteristics of biomaterials.  相似文献   

20.
A macro-dot immunoassay was developed to quantitate proteins (antigens) secreted in the culture media of primary rat hepatocytes. Dilutions of protein standards and undiluted spent culture media were applied to numbered sheets of nitrocellulose (NC) paper by vacuum filtration (in volumes up to 1 ml) through a specially designed macrofiltration apparatus constructed of plexiglass. Sequential incubation of the NC with bovine serum albumin blocking buffer, monospecific antibody, and 125I Protein A enabled quantitation of protein concentration by determination of NC bound radioactivity. Linear and reproducible standard curves were obtained with fibrinogen, albumin, transferrin, and haptoglobin. A high degree of coefficient of correlation between radioactivity (cpm) and protein concentration was found. Intra- and interest reproducibility was excellent (C.V.'s less than 7%). By using monospecific antibodies, single proteins (i.e., fibrinogen), as low as 32 ng/ml, could be quantified in heterogeneous protein mixtures and in spent culture media. The assay was sensitive to the difference of fibrinogen secretion under nonstimulatory (serum-free hormonally defined medium, SFHD) and stimulatory (SFHD plus hydrocortisone) culture conditions. The procedure and techniques described are applicable to the quantitation of any protein in a suitable buffer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号