首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In squalestatins possessing at C6 either a 4,6-dimethyloctenoate ester or a hydroxyl group, the 5-carboxylic acid is crucial for squalene synthase inhibitory activity. In the former seires, free carboxylic acids are not required at C3 or C4 for potent enzyme inhibitory activity whereas in the latter series esterification of the carboxylic acids at C3 or C4 results in a significant reduction in enzyme inhibitory activity.  相似文献   

2.
In the present article, we have reported the design, synthesis, and identification of highly potent benzhydrol derivatives as squalene synthase inhibitors (compound 1). Unfortunately, the in vivo efficacies of the compounds were not enough for acquiring the clinical candidate. We continued our investigation to obtain a more in vivo efficacious template than the benzhydrol template. In our effort, we focused on a benzoxazepine ring and designed a new tricyclic scaffold by the incorporation of heterocycle into it. Prepared pyrrolobenzoxazepine derivatives showed further efficient in vitro and in vivo activities.  相似文献   

3.
Squalene synthase (E.C. 2.5.1.21) catalyses the reductive dimerisation of farnesyl diphosphate in a [1-4] head to head fashion to form squalene, and is the first committed step in cholesterol biosynthesis. Specific inhibitors of squalene synthase would inhibit cholesterol formation and allow production of other important compounds derived from the cholesterol biosynthetic pathway, namely the ubiquinones (co-enzyme Q(10)), dolichol, and would also allow the isoprenylation process of ras by farnesyl-protein transferase. The construction of a hypothetical squalene synthase three-dimensional pharmacophore is presented. It serves as a template for the identification of several new potential classes of inhibitors. The synthesis, anti-microbial and mammalian pig liver squalene synthase activities of analogues based on the bicyclo[3.2.0]heptane and bicyclo[3.3.0]octane ring systems are reported. Analogues of the latter system are pro-drug type inhibitors and exhibit promising biological activity.  相似文献   

4.
Squalene synthase (E.C. 2.5.1.21) catalyses the reductive dimerization of two molecules of farnesyl diphosphate to form squalene and is involved in the first committed step in cholesterol biosynthesis. Inhibition of this enzyme is therefore an attractive target for hypocholesterolemic strategies. A series of quinuclidine derivatives incorporating a tricyclic system was synthesized and evaluated for their ability to inhibit squalene synthase in vitro. A 9H-fluorene moiety was found to be optimal as the tricyclic system for potent inhibitory activity. Improved activity can be achieved with a conformationally constrained three-atom linkage connecting the tricyclic system with the quinuclidine nucleus. Among these compounds, (Z)-3-[2-(9H-fluoren-2-yloxy)ethylidene]-quinuclidine hydrochloride 31 was found to be a potent inhibitor of squalene synthase derived from hamster liver and human hepatoma cells with IC(50) values of 76 and 48 nM, respectively. Oral dosing of compound 31 demonstrated effective reduction of plasma non-HDL cholesterol levels in hamsters.  相似文献   

5.
Squalene synthase inhibitors are potentially superior hypolipidemic agents. We synthesized novel propylamine derivatives, as well as evaluated their ability to inhibit squalene synthase and their lipid-lowering effects in rats. 1-Allyl-2-[3-(benzylamino)propoxy]-9H-carbazole (YM-75440) demonstrated potent inhibition of the enzyme derived from HepG2 cells with an IC(50) value of 63 nM. It significantly reduced both plasma total cholesterol and plasma triglyceride levels following oral dosing to rats with a reduced tendency to elevate plasma transaminase levels.  相似文献   

6.
We have recently reported the discovery of the new benzhydrol template, which has a highly potent inhibitory activity for squalene synthase, as typified by compound 1 (SSI IC(50)=0.85 nM). However, it was composed of a pair of easy rotatable atropisomers. In the effort to fix the isomerization, a highly potent alkoxy-aminobenzhydrol scaffold was developed. Some of these acquired compounds demonstrating strong cholesterol synthesis inhibitory activities in a rat hepatic cell. Moreover, two of the series compounds exhibited specific plasma lipid-lowering effects in in vivo animal models.  相似文献   

7.
Squalene synthase catalyzes the reductive condensation of two identical substrate molecules, farnesyl diphosphate, to the hydrocarbon squalene via an obligatory intermediate, presqualene pyrophosphate. Since the kinetic mechanism of the transformation is sequential, two substrate binding pockets that recognize the same molecule must exist in the enzyme active site. This raises the possibility of a choice of binding pockets for inhibitors that are designed as substrate or reaction intermediate analogs and thus may provide some information on the mechanism of differentiation of the two identical molecules. In this report, we have investigated the mechanism of inhibition of a series of farnesyl diphosphate analog inhibitors. The inhibitors fall into two categories. One class of compounds binds to free enzyme as well as the enzyme substrate complex, and the binding is refractory to the concentration of the substrate. The second class binds only to the free enzyme, and its binding is significantly modulated by the substrate concentration. Very modest structural changes in the compounds appear to dictate which class of inhibitor any compound may fall into. The significance of these observations with respect to the mechanism of the enzyme are discussed.  相似文献   

8.
With the increasing realization that modulating a multiplicity of targets can be an asset in the treatment of multifactorial disorders, we hereby report the synthesis and evaluation of the first compounds in which antioxidant, anti-inflammatory as well as squalene synthase (SQS) inhibitory activities are combined by design, in a series of simple molecules, extending their potential range of activities against the multifactorial disease of atherosclerosis. The activity of the initially synthesized antihyperlipidemic morpholine derivatives (1-6), in which we combined several pharmacophore moieties, was evaluated in vitro (antioxidant, inhibition of SQS and lipoxygenase) and in vivo (anti-dyslipidemic and anti-inflammatory effect). We further compared the in vitro SQS inhibitory action of these derivatives with theoretically derived molecular interactions by performing an in silico docking study using the X-ray crystal structure of human SQS. Based on low energy preferred binding modes, we designed potentially more potent SQS ligands. We proceeded with synthesizing and evaluating these new structures (7-12) in vitro and in vivo, to show that the new derivatives were significantly more active than formerly developed congeners, both as SQS inhibitors (20-70-fold increase in activity) and antioxidants (4-30-fold increase in activity). A significant correlation between experimental activity [Log(1/IC(50))] and the corresponding binding free energy (ΔG(b)) of the docked compounds was shown. These results, taken together, show a promising alternative and novel approach for the design and development of multifunctional antiatherosclerosis agents.  相似文献   

9.
Green tea polyphenols: novel and potent inhibitors of squalene epoxidase   总被引:7,自引:0,他引:7  
The green tea gallocatechins, (-)-epigallocatechin-3-O-gallate (EGCG) (IC(50) = 0.69 microM), (-)-gallocatechin-3-O-gallate (GCG) (IC(50) = 0.67 microM), (-)-epicatechin-3-O-gallate (ECG) (IC(50) = 1.3 microM), and theasinensin A (IC(50) = 0.13 microM), were found to be potent and selective inhibitors of rat squalene epoxidase (SE), a rate-limiting enzyme of cholesterol biogenesis. On the other hand, flavan-3-ols without galloyl group at C-3 did not show significant enzyme inhibition. It was demonstrated for the first time that the cholesterol lowering effect of green tea may be attributed to their potent SE inhibition activities. Inhibition kinetics revealed that EGCG inhibited SE in noncompetitive (K(I) = 0.74 microM), and non-time-dependent manner. The potent enzyme inhibition would be caused by specific binding to the enzyme, and by scavenging reactive oxygen species required for the monooxygenase reaction.  相似文献   

10.
In this paper we describe the preparation of some biphenylquinuclidine derivatives and their evaluation as inhibitors of squalene synthase in order to explore their potential in the treatment of the parasitic diseases leishmaniasis and Chagas disease. The compounds were screened against recombinant Leishmania major squalene synthase and against Leishmania mexicana promastigotes, Leishmania donovani intracellular amastigotes and Trypanosoma cruzi intracellular amastigotes. Compounds that inhibited the enzyme, also reduced the levels of steroids and caused growth inhibition of L. mexicana promastigotes. However there was a lower correlation between inhibition of the enzyme and growth inhibition of the intracellular parasites, possibly due to delivery problems. Some compounds also showed growth inhibition of T. brucei rhodesiense trypomastigotes, although in this case alternative modes of action other than inhibition of SQS are probably involved.  相似文献   

11.
Highly potent 1,3-beta-D-glucan synthase inhibitors 10, 11 and 13 have been identified by the chemical modification of the fungicidal macrocyclic lipopeptidolactone, RO-09-3655 (1), isolated from the cultured broth of Deuteromycotinia spp. D-Ornithine derivative (10) showed improved antifungal activity in the systemic candidiasis model in mice and reduced hepatotoxicity in vitro, as compared with 1.  相似文献   

12.
J M Jez  M E Bowman  J P Noel 《Biochemistry》2001,40(49):14829-14838
Chalcone synthase (CHS) belongs to the family of type III polyketide synthases (PKS) that catalyze formation of structurally diverse polyketides. CHS synthesizes a tetraketide by sequential condensation of three acetyl anions derived from malonyl-CoA decarboxylation to a p-coumaroyl moiety attached to an active site cysteine. Gly256 resides on the surface of the CHS active site that is in direct contact with the polyketide chain derived from malonyl-CoA. Thus, position 256 serves as an ideal target to probe the link between cavity volume and polyketide chain-length determination in type III PKS. Functional examination of CHS G256A, G256V, G256L, and G256F mutants reveals altered product profiles from that of wild-type CHS. With p-coumaroyl-CoA as a starter molecule, the G256A and G256V mutants produce notably more tetraketide lactone. Further restrictions in cavity volume such as that seen in the G256L and G256F mutants yield increasing levels of the styrylpyrone bis-noryangonin from a triketide intermediate. X-ray crystallographic structures of the CHS G256A, G256V, G256L, and G256F mutants establish that these substitutions reduce the size of the active site cavity without significant alterations in the conformations of the polypeptide backbones. The side chain volume of position 256 influences both the number of condensation reactions during polyketide chain extension and the conformation of the triketide and tetraketide intermediates during the cyclization reaction. These results viewed in conjunction with the natural sequence variation of residue 256 suggest that rapid diversification of product specificity without concomitant loss of substantial catalytic activity in related CHS-like enzymes can occur by site-specific evolution of side chain volume at position 256.  相似文献   

13.
Microorganisms producing squalene synthase inhibitors were screened from soils. A high producer was selected and identified as a Streptomyces species. Two active inhibitors were obtained from culture broths via a series of purification processes involving solvent extraction, WK-10 cation-exchange column chromatography, HP-20 adsorption column chromatography, silica-gel column chromatography, preparative HPLC, and crystallization. The inhibitors were confirmed as macrolactins A and F with molecular weights of 402 by UV-absorption spectrometry, fast atom bombardment mass spectometry, and 13C- and 1H-NMR analyses. Kinetic results for macrolactins A and F showed that they appear to be noncompetitive inhibitors of rat liver squalene synthase with IC50 values of 1.66 and 1.53 micromol/L, respectively. Since mammalian squalene synthase was used, these inhibitors have significant potential as therapeutic agents for hyperlipemia and suppression of cholesterol biosynthesis.  相似文献   

14.
Pseudouridine synthase 1 (Pus1p) is an unusual site-specific modification enzyme in that it can modify a number of positions in tRNAs and can recognize several other types of RNA. No consensus recognition sequence or structure has been identified for Pus1p. Human Pus1p was used to determine which structural or sequence elements of human tRNA(Ser) are necessary for pseudouridine (Ψ) formation at position 28 in the anticodon stem-loop (ASL). Some point mutations in the ASL stem of tRNA(Ser) had significant effects on the levels of modification and compensatory mutation, to reform the base pair, restored a wild-type level of Ψ formation. Deletion analysis showed that the tRNA(Ser) TΨC stem-loop was a determinant for modification in the ASL. A mini-substrate composed of the ASL and TΨC stem-loop exhibited significant Ψ formation at position 28 and a number of mutants were tested. Substantial base pairing in the ASL stem (3 out of 5 bp) is required, but the sequence of the TΨC loop is not required for modification. When all nucleotides in the ASL stem other than U28 were changed in a single mutant, but base pairing was retained, a near wild-type level of modification was observed.  相似文献   

15.
5'-Bromoacetamido-5'-deoxythymidine (BAT), 5'-iodoacetamido-5'-deoxythymidine (IAT), 5'-chloroacetamido-5'-deoxythymidine (CAT) and [14C]BAT were synthesized and their interactions with thymidylate synthase purified from L1210 cells were investigated. The inhibitory effects of these compounds on thymidylate synthase were in the order BAT greater than IAT greater than CAT, which is in agreement with their cytotoxic effects in L1210 cells. In the presence of substrate during preincubation, the concentration required for 50% inhibition of the enzyme activity by these inhibitors was 4-8-fold higher than it was in the absence of dUMP. The I50 values for BAT were 1 X 10(-5) M and 1.2 X 10(-6) M in the presence and absence, respectively, of dUMP during preincubation. These results were in agreement with the observed inhibition of thymidylate synthase by BAT in intact L1210 cells. A Lineweaver-Burk plot revealed that BAT behaved as a competitive inhibitor. The Km for the enzyme was 9.2 microM, and the Ki determined for competitive inhibition by BAT was 5.4 microM. Formation of a tight, irreversible complex is inferred from the finding that BAT-inactivation of thymidylate synthase was not reversible on prolonged dialysis and that the enzyme-BAT complex was nondissociable by gel filtration through a Sephadex G-25 column or by TSK-125 column chromatography. Incubation of thymidylate synthase with BAT resulted in time-dependent, irreversible loss of enzyme activity by first-order kinetics. The rate constant for inactivation was 0.4 min-1, and the steady-state constant of inactivation, Ki, was estimated to be 6.6 microM. The 5'-haloacetamido-5'-deoxythymidines provide specific inhibitors of thymidylate synthase that may also serve as reagents for studying the enzyme mechanism.  相似文献   

16.
Novel squalene synthase inhibitors are disclosed. SAR and pharmacological profile of selected compounds are discussed.  相似文献   

17.
Summary A Rhodococcus sp., isolated from soil, was able to use squalene as the sole carbon source. The principal metabolic product from squalene was detected by thin layer and high performance liquid chromatography, and identified as 2, 6, 10, 15, 19, 23-hexamethyltetraco-sa-2, 6, 10, 14, 18, 22-hexaen-12-one by nuclear magnetic resonance, infrared, ultra-violet, and mass spectrometry.  相似文献   

18.
The principle of selective elution from a solid phase has been exploited to develop an assay for the determination of squalene biosynthesis in rat liver homogenates. Using either [1-14C]isopentenyl diphosphate as a precursor for squalene or [2-14C]farnesyl diphosphate as a direct substrate of squalene synthase, the production of radiolabeled squalene is determined after adsorption of assay mixtures onto silica gel thin-layer chromatography sheets and selective elution of the diphosphate precursors into a solution of sodium dodecyl sulfate at alkaline pH. The use of [2-14C]farnesyl diphosphate, and of an endogenous oxygen consumption system (ascorbate/ascorbate oxidase) to prevent further metabolism of squalene, allows the method to be applied as a dedicated assay for squalene synthase activity. The assay has been developed in microtiter plate format and may be deployed either in a quantitative, low-throughout mode or in a qualitative, high-through-put mode. The latter is suitable for screening to aid in the discovery of new inhibitors of squalene synthase.  相似文献   

19.
Structure and regulation of mammalian squalene synthase   总被引:1,自引:0,他引:1  
  相似文献   

20.
Novel squalene synthase inhibitors are disclosed. The design, synthesis, SAR and pharmacological profile of the compounds are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号