首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A R Gendall  Y Y Levy  A Wilson  C Dean 《Cell》2001,107(4):525-535
The acceleration of flowering by a long period of low temperature, vernalization, is an adaptation that ensures plants overwinter before flowering. Vernalization induces a developmental state that is mitotically stable, suggesting that it may have an epigenetic basis. The VERNALIZATION2 (VRN2) gene mediates vernalization and encodes a nuclear-localized zinc finger protein with similarity to Polycomb group (PcG) proteins of plants and animals. In wild-type Arabidopsis, vernalization results in the stable reduction of the levels of the floral repressor FLC. In vrn2 mutants, FLC expression is downregulated normally in response to vernalization, but instead of remaining low, FLC mRNA levels increase when plants are returned to normal temperatures. VRN2 function therefore stably maintains FLC repression after a cold treatment, serving as a mechanism for the cellular memory of vernalization.  相似文献   

2.
Vernalization, the promotion of flowering after prolonged exposure to low temperatures, is an adaptive response of plants ensuring that flowering occurs at a propitious time in the annual seasonal cycle. In Arabidopsis, FLOWERING LOCUS C (FLC), which encodes a repressor of flowering, is a key gene in the vernalization response; plants with high-FLC expression respond to vernalization by downregulating FLC and thereby flowering at an earlier time. Vernalization has the hallmarks of an epigenetically regulated process. The downregulation of FLC by low temperatures is maintained throughout vegetative development but is reset at each generation. During our study of vernalization, we have found that a small gene cluster, including FLC and its two flanking genes, is coordinately regulated in response to genetic modifiers, to the environmental stimulus of vernalization, and in plants with low levels of DNA methylation. Genes encoded on foreign DNA inserted into the cluster also acquire the low-temperature response. At other chromosomal locations, FLC maintains its response to vernalization and imposes a parallel response on a flanking gene. This suggests that FLC contains sequences that confer changes in gene expression extending beyond FLC itself, perhaps through chromatin modification.  相似文献   

3.
4.
Members of the grass subfamily Pooideae are characterized by their adaptation to cool temperate climates. Vernalization is the process whereby flowering is accelerated in response to a prolonged period of cold. Winter cereals are tolerant of low temperatures and flower earlier with vernalization, whereas spring cultivars are intolerant of low temperatures and flower later with vernalization. In the pooid grasses wheat (Triticum monococcum, Triticum aestivum) and barley (Hordeum vulgare), vernalization responsiveness is determined by allelic variation at the VERNALIZATION1 (VRN1) and/or VRN2 loci. To determine whether VRN1, and its paralog FRUITFULL2 (FUL2), are involved in vernalization requirement across Pooideae, we determined expression profiles for multiple cultivars of oat (Avena sativa) and wheat with and without cold treatment. Our results demonstrate significant up-regulation of VRN1 expression in leaves of winter oat and wheat in response to vernalization; no treatment effect was found for spring or facultative growth habit oat and wheat. Similar cold-dependent patterns of leaf expression were found for FUL2 in winter oat, but not winter wheat, suggesting a redundant qualitative role for these genes in the quantitative induction of flowering competency of oat. These and other data support the hypothesis that VRN1 is a common regulator of vernalization responsiveness within the crown pooids. Finally, we found that up-regulation of VRN1 in vegetative meristems of oat was significantly later than in leaves. This suggests distinct and conserved roles for temperate cereal grass VRN1/FUL-like genes, first, in systemic signaling to induce flowering competency, and second, in meristems to activate genes involved in the floral transition.  相似文献   

5.
6.
Winter varieties of plants can flower only after exposure to prolonged cold. This phenomenon is known as vernalization and has been widely studied in the model plant Arabidopsis thaliana as well as in monocots. Through the repression of floral activator genes, vernalization prevents flowering in winter. In Arabidopsis, FLOWERING LOCUS C or FLC is the key repressor during vernalization, while in monocots vernalization is regulated through VRN1, VRN2 and VRN3 (or FLOWERING LOCUS T). Interestingly, VRN genes are not homologous to FLC but FLC homologs are found to have a significant role in vernalization response in cereals. The presence of FLC homologs in monocots opens new dimensions to understand, compare and retrace the evolution of vernalization pathways between monocots and dicots. In this review, we discuss the molecular mechanism of vernalization-induced flowering along with epigenetic regulations in Arabidopsis and temperate cereals. A better understanding of cold-induced flowering will be helpful in crop breeding strategies to modify the vernalization requirement of economically important temperate cereals.  相似文献   

7.
Vernalization is the promotion of flowering in response to the prolonged cold of winter. To survive sub‐zero winter temperatures, plants must first acclimate to low, non‐freezing temperatures (cold acclimation). Induction of VERNALIZATION INSENSITIVE 3 (VIN3), the first gene in the vernalization pathway, is initiated within the same time frame as the induction of genes in the cold acclimation pathway raising the question of whether there are common elements in the signal transduction pathways that activate these two responses to cold. We show that none of the signalling components required for cold acclimation, including the ‘master regulator’INDUCTION OF CBF EXPRESSION1 (ICE1) or HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 (HOS1), which has been described as a link between cold acclimation and vernalization, play a role in VIN3 induction. We also show that the hormone abscisic acid (ABA) does not modulate VIN3 induction, consistent with earlier reports that ABA signalling plays no role in the vernalization response. The cold acclimation pathway is activated at 12 °C, at which temperature there is no induction of VIN3 expression. Taken together, our data demonstrate that the responses to low temperatures leading to cold acclimation and vernalization are controlled by distinct signalling pathways.  相似文献   

8.
9.
10.
Almost 50 years ago, it was shown that gibberellin (GA) applications caused flowering in species normally responding to cold (vernalization) and long day (LD). The implication that GAs are involved with vernalization and LD responses is examined here with the grass Lolium perenne. This species has an obligatory requirement for exposure to both vernalization and LD for its flowering (inflorescence initiation). Specific effects of vernalization or LD on GA synthesis, content, and action have been documented using four treatment pairs: nonvernalized or vernalized plants exposed to short days (SDs) or LDs. Irrespective of vernalization status, exposure to two LDs increased expression of L. perenne GA 20-oxidase-1 (LpGA20ox1), a critical GA biosynthetic gene, with endogenous GAs increasing by up to 5-fold in leaf and shoot. In parallel, LD led to degradation of a DELLA protein, SLENDER (within 48 h of LD or within 2 h of GA application). There was no effect on GA catabolism or abscisic acid content. Loss of SLENDER, which is a repressor of GA signaling, confirms the physiological relevance of increased GA content in LD. For flowering, applied GA replaced the need for LD but not that for vernalization. Thus, GAs may be an LD, leaf-sourced hormonal signal for flowering of L. perenne. By contrast, vernalization had little impact on GA or SLENDER levels or on SLENDER degradation following GA application. Thus, although vernalization and GA are both required for flowering of L. perenne, GA signaling is independent of vernalization that apparently impacts on unrelated processes.  相似文献   

11.
Vernalization is an environmentally induced epigenetic switch in which winter cold triggers epigenetic silencing of floral repressors and thus provides competence to flower in spring. Vernalization triggers the recruitment of chromatin-modifying complexes to a clade of flowering repressors that are epigenetically silenced via chromatin modifications. In Arabidopsis thaliana, VERNALIZATION INSENSITIVE3 (VIN3) and its related plant homeodomain finger proteins act together with Polycomb Repressive Complex 2 to increase repressive histone marks at floral repressor loci, including FLOWERING LOCUS C (FLC) and its related genes, by vernalization. Here, we show that VIN3 family of proteins nonredundantly functions to repress different subsets of the FLC gene family during the course of vernalization. Each VIN3 family protein binds to modified histone peptides in vitro and directly associates with specific sets of FLC gene family chromatins in vivo to mediate epigenetic silencing. In addition, members of the FLC gene family are also differentially regulated during the course of vernalization to mediate proper vernalization response. Our results show that these two gene families cooperated during the course of evolution to ensure proper vernalization response through epigenetic changes.  相似文献   

12.
春化作用在控制高等植物开花中起着重要的作用。本文综述了近年来以拟南芥(Arabidopsis thaliana)和冬小麦(Triticum aestivum)为主要研究对象进行的有关春化作用分子机制的研究; 概括和分析了已经分离得到的与春化有关的基因的功能及其调控方式以及各基因间的相互作用。  相似文献   

13.
14.
Many plants in temperate regions have a requirement for vernalization in order to initiate the reproductive growth phase. In cereals, this requirement has been linked to the VRN1 locus, which encodes an APETALA1 -like ( AP1 -like) MADS-box gene. In perennial ryegrass ( Lolium perenne L.), we have isolated two MADS-box genes that are regulated by vernalization, LpMADS1 , which co-localize to the VRN1 locus in ryegrass, and LpMADS10 , which is an SVP -like MADS-box gene. In the shoot apex, LpMADS1 is increasingly induced by cold exposure, whereas LpMADS10 is increasingly repressed. Comparison of LpMADS1 promoter regions from several ryegrass varieties, with and without vernalization requirement, suggests that a putative MADS-box protein-binding site (CArG-box) might be important for the vernalization-regulated expression of LpMADS1 . Although the LpMADS10 expression pattern suggests it to be involved in floral repression, ectopic expression of LpMADS10 did neither affect flowering time significantly in Arabidopsis thaliana nor in L. perenne . Interestingly, we found that LpMADS1 interacts with LpMADS10 in a yeast two-hybrid assay. This finding is discussed in regard to the regulation of vernalization response in perennial ryegrass.  相似文献   

15.
16.
17.
植物春化作用的分子机理   总被引:11,自引:1,他引:11  
春化作用在控制高等植物开花中起着重要的作用。本文综述了近年来以拟南芥(Arabidopsis thaliana)和冬小麦(Triticum aestivum)为主要研究对象进行的有关春化作用分子机制的研究;概括和分析了已经分离得到的与春化有关的基因的功能及其调控方式以及各基因间的相互作用。  相似文献   

18.
Vernalization, the induction of flowering by low winter temperatures, is likely to be involved in plant climatic adaptation. However, the genetic, molecular and ecological bases underlying the quantitative variation that tunes vernalization sensitivity to natural environments are largely unknown. To address these questions, we have studied the enhanced vernalization response shown by the Ll-0 accession of Arabidopsis thaliana. Quantitative trait locus (QTL) mapping for several flowering initiation traits in relation to vernalization, in a new Ler × Ll-0 recombinant inbred line (RIL) population, identified large effect alleles at FRI, FLC and HUA2, together with two small effect loci named as Llagostera vernalization response (LVR) 1 and 2. Phenotypic analyses of near isogenic lines validated LVR1 effect on flowering vernalization responses. To further characterize the FLC allele from Ll-0, we carried out genetic association analyses using a regional collection of wild genotypes. FLC-Ll-0 appeared as a low-frequency allele that is distinguished by polymorphism Del(-57), a 50-bp-deletion in the 5'-UTR. Del(-57) was significantly associated with enhanced vernalization responses and FLC RNA expression, as well as with altitude and minimum temperatures. These results are consistent with Del(-57) acting as a novel cis-regulatory FLC polymorphism that may confer climatic adaptation by increasing vernalization sensitivity.  相似文献   

19.
Vernalization and photoperiod (PP) responses are developmental mechanisms that allow plants to synchronize their growth and reproductive cycles with the seasonal weather changes. Vernalization requirement has been shown to influence the length of time that low-temperature (LT)-induced genes are up-regulated when cereal species are exposed to acclimating temperatures. The objective of the present study was to determine whether expression of LT-induced Wcs and Wcor gene families is also developmentally regulated by PP response. The LT-tolerant, highly short-day (SD)-sensitive barley (Hordeum vulgare L. cv Dicktoo) was subjected to 8-h SD and 20-h long-day PPs at cold-acclimating temperatures over a period of 70 d. A delay in transition from the vegetative to the reproductive stage under SD resulted in an increased level and longer retention of LT tolerance. Similar WCS and WCOR protein homologs were expressed, but levels of expression were much higher in plants acclimated under SD, indicating that the poor LT tolerance of long-day plants was the result of an inability to maintain LT-induced genes in an up-regulated state. These observations indicate that the PP and vernalization genes influence the expression of LT-induced genes in cereals through separate pathways that eventually converge to activate genes controlling plant development. In both instances, the delay in the transition from the vegetative to the reproductive stage produces increased LT tolerance that is sustained for a longer period of time, indicating that the developmental genes determine the duration of expression of LT-induced structural genes.  相似文献   

20.
Vernalization is the process by which flowering is promoted by prolonged exposure to the cold of a typical winter. In certain plant species, the role of vernalization is to suppress the expression of genes that encode repressors of flowering. In Arabidopsis, this suppression is an epigenetic phenomenon in the sense that it is mitotically stable in the spring after the inducing signal, cold, is no longer perceived. This epigenetic silencing results from the modification of the chromatin of flowering repressors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号