首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Manganese (Mn) is an essential trace element for plants. Recently, the genes responsible for uptake of Mn in plants were identified in Arabidopsis and rice. However, the mechanism of Mn distribution in plants has not been clarified. In the present study we identified a natural resistance-associated macrophage protein (NRAMP) family gene in rice, OsNRAMP3, involved in Mn distribution. OsNRAMP3 encodes a plasma membrane-localized protein and was specifically expressed in vascular bundles, especially in phloem cells. Yeast complementation assay showed that OsNRAMP3 is a functional Mn-influx transporter. When OsNRAMP3 was absent, rice plants showed high sensitivity to Mn deficiency. Serious necrosis appeared on young leaves and root tips of the OsNRAMP3 knockout line cultivated under low Mn conditions, and high Mn supplies could rescue this phenotype. However, the necrotic young leaves of the knockout line possessed similar levels of Mn to the wild type, suggesting that the necrotic appearance was caused by disturbed distribution of Mn but not a general Mn shortage. Additionally, compared with wild type, leaf Mn content in osnramp3 plants was mostly in older leaves. We conclude that OsNRAMP3 is a vascular bundle-localized Mn-influx transporter involved in Mn distribution and contributes to remobilization of Mn from old to young leaves.  相似文献   

2.
Irrigation of paddy fields to arsenic (As) containing groundwater leads to As accumulation in rice grains and causes serious health risk to the people worldwide. To reduce As intake via consumption of contaminated rice grain, identification of the mechanisms for As accumulation and detoxification in rice is a prerequisite. Herein, we report involvement of a member of rice NRAMP (Natural Resistance‐Associated Macrophage Protein) transporter, OsNRAMP1, in As, in addition to cadmium (Cd), accumulation through expression in yeast and Arabidopsis. Expression of OsNRAMP1 in yeast mutant (fet3fet4) rescued iron (Fe) uptake and exhibited enhanced accumulation of As and Cd. Expression of OsNRAMP1 in Arabidopsis provided tolerance with enhanced As and Cd accumulation in root and shoot. Cellular localization revealed that OsNRAMP1 resides on plasma membrane of endodermis and pericycle cells and may assist in xylem loading for root to shoot mobilization. This is the first report demonstrating role of NRAMP in xylem mediated loading and enhanced accumulation of As and Cd in plants. We propose that genetic modification of OsNRAMP1 in rice might be helpful in developing rice with low As and Cd content in grain and minimize the risk of food chain contamination to these toxic metals.  相似文献   

3.
4.
Although the vacuole is the most important final store for toxic heavy metals like cadmium (Cd2+), our knowledge on how they are transported into the vacuole is still insufficient. It has been suggested that Cd2+ can be transported as phytochelatin‐Cd2+ by an unknown ABC transporter or in exchange with protons by cation/proton exchanger (CAX) transporters. To unravel the contribution of vacuolar transporters to Cd2+ detoxification, a quantitative proteomics approach was performed. Highly purified vacuoles were isolated from barley plants grown under minus, low (20 μM), and high (200 μM) Cd2+ conditions and protein levels of the obtained tonoplast samples were analyzed using isobaric tag for relative and absolute quantitation (iTRAQ?). Although 56 vacuolar transporter proteins were identified, only a few were differentially expressed. Under low‐Cd2+ conditions, an inorganic pyrophosphatase and a γ‐tonoplast intrinsic protein (γ‐TIP) were up‐regulated, indicating changes in energization and water fluxes. In addition, the protein ratio of a CAX1a and a natural resistance‐associated macrophage protein (NRAMP), responsible for vacuolar Fe2+ export was increased. CAX1a might play a role in vacuolar Cd2+ transport. An increase in NRAMP activity leads to a higher cytosolic Fe2+ concentration, which may prevent the exchange of Fe2+ by toxic Cd2+. Additionally, an ABC transporter homolog to AtMRP3 showed up‐regulation. Under high Cd2+ conditions, the plant response was more specific. Only a protein homologous to AtMRP3 that showed already a response under low Cd2+ conditions, was up‐regulated. Interestingly, AtMRP3 is able to partially rescue a Cd2+‐sensitive yeast mutant. The identified transporters are good candidates for further investigation of their roles in Cd2+ detoxification.  相似文献   

5.
Phylogenetic relationships within cation transporter families of Arabidopsis   总被引:48,自引:0,他引:48  
Uptake and translocation of cationic nutrients play essential roles in physiological processes including plant growth, nutrition, signal transduction, and development. Approximately 5% of the Arabidopsis genome appears to encode membrane transport proteins. These proteins are classified in 46 unique families containing approximately 880 members. In addition, several hundred putative transporters have not yet been assigned to families. In this paper, we have analyzed the phylogenetic relationships of over 150 cation transport proteins. This analysis has focused on cation transporter gene families for which initial characterizations have been achieved for individual members, including potassium transporters and channels, sodium transporters, calcium antiporters, cyclic nucleotide-gated channels, cation diffusion facilitator proteins, natural resistance-associated macrophage proteins (NRAMP), and Zn-regulated transporter Fe-regulated transporter-like proteins. Phylogenetic trees of each family define the evolutionary relationships of the members to each other. These families contain numerous members, indicating diverse functions in vivo. Closely related isoforms and separate subfamilies exist within many of these gene families, indicating possible redundancies and specialized functions. To facilitate their further study, the PlantsT database (http://plantst.sdsc.edu) has been created that includes alignments of the analyzed cation transporters and their chromosomal locations.  相似文献   

6.
Put the metal to the petal: metal uptake and transport throughout plants   总被引:5,自引:0,他引:5  
Compared to other organisms, plants have expanded families of transporters that are involved in the uptake and efflux of metals. Fortunately, in many cases, the examination of double mutants has been sufficient to overcome the challenge of studying functionally redundant gene families. Plants that lack two heavy-metal-transporting P-type ATPase family members (HMA2 and HMA4) reveal a function for these transporters in Zn translocation from roots to shoots. Likewise, the phenotype of plants that lack two natural resistance associated macrophage protein (NRAMP) homologs (NRAMP3 and NRAMP4) implicate these metal uptake proteins in the mobilization of vacuolar Fe stores during seed germination. Most families of metal transporters are ubiquitous but the Yellow Stripe1-Like (YSL) family is plant specific and YSL family members have been implicated in the transport of metals that are complexed with a plant specific chelator called nicotianamine (NA).  相似文献   

7.
Cloning and characterizations of plant K+ transport systems aside from Arabidopsis have been increasing over the past decade, favored by the availability of more and more plant genome sequences. Information now available enables the comparison of some of these systems between species. In this review, we focus on three families of plant K+ transport systems that are active at the plasma membrane: the Shaker K+ channel family, comprised of voltage-gated channels that dominate the plasma membrane conductance to K+ in most environmental conditions, and two families of transporters, the HAK/KUP/KT K+ transporter family, which includes some high-affinity transporters, and the HKT K+ and/or Na+ transporter family, in which K+-permeable members seem to be present in monocots only. The three families are briefly described, giving insights into the structure of their members and on functional properties and their roles in Arabidopsis or rice. The structure of the three families is then compared between plant species through phylogenic analyses. Within clusters of ortologues/paralogues, similarities and differences in terms of expression pattern, functional properties and, when known, regulatory interacting partners, are highlighted. The question of the physiological significance of highlighted differences is also addressed.  相似文献   

8.
A considerable portion of agricultural land in central‐east Japan has been contaminated by radioactive material, particularly radioactive Cs, due to the industrial accident at the Fukushima Daiichi nuclear power plant. Understanding the mechanism of absorption, translocation and accumulation of Cs+ in plants will greatly assist in developing approaches to help reduce the radioactive contamination of agricultural products. At present, however, little is known regarding the Cs+ transporters in rice. A transporter‐enriched yeast expression library was constructed and the library was screened for Cs+ transporter genes. The 1452 full length cDNAs encoding transporter genes were obtained from the Rice Genome Resource Center and 1358 clones of these transporter genes were successively subcloned into yeast expression vectors; which were then transferred into yeast. Using this library, both positive and negative selection screens can be performed, which have not been previously possible. The constructed library is an excellent tool for the isolation of novel transporter genes. This library was screened for clones that were sensitive to Cs+ using a SD‐Gal medium containing either 30 or 70 mM CsCl; resulting in the isolation of 13 Cs+ sensitive clones. 137Cs absorption experiments were conducted and confirmed that all of the identified clones were able to absorb 137Cs. A total of 3 potassium transporters, 2 ABC transporters and 1 NRAMP transporter were among the 13 identified clones.  相似文献   

9.
Plant annexins are Ca2+-dependent phospholipid-binding proteins and are encoded by multigene families. They are implicated in the regulation of plant development as well as protection from drought and other stresses. They are well characterized in Arabidopsis, however no such characterization of rice annexin gene family has been reported thus far. With the availability of the rice genome sequence information, we have identified ten members of the rice annexin gene family. At the protein level, they share 16–64% identity with predicted molecular masses ranging from 32 to 40 kDa. Phylogenetic analysis of rice annexins together with annexins from other monocots led to their classification into five different orthologous groups and share similar motif patterns in their protein sequences. Expression analysis by real-time RT-PCR revealed differential temporal and spatial regulation of these genes. The rice annexin genes are also found to be regulated in seedling stage by various abiotic stressors including salinity, drought, heat and cold. Additionally, in silico analysis of the putative upstream sequences was analyzed for the presence of stress-responsive cis-elements. These results provide a basis for further functional characterization of specific rice annexin genes at the tissue/developmental level and in response to abiotic stresses.  相似文献   

10.
The mechanism of calcium uptake, translocation and accumulation in Poaceae has not yet been fully understood. To address this issue, we conducted genome-wide comparative in silico analysis of the calcium (Ca(2+)) transporter gene family of two crop species, rice and sorghum. Gene annotation, identification of upstream cis-acting elements, phylogenetic tree construction and syntenic mapping of the gene family were performed using several bioinformatics tools. A total of 31 Ca(2+) transporters, distributed on 9 out of 12 chromosomes, were predicted from rice genome, while 28 Ca(2+) transporters predicted from sorghum are distributed on all the chromosomes except chromosome 10 (Chr 10). Interestingly, most of the genes on Chr 1 and Chr 3 show an inverse syntenic relationship between rice and sorghum. Multiple sequence alignment and motif analysis of these transporter proteins revealed high conservation between the two species. Phylogenetic tree could very well identify the subclasses of channels, ATPases and exchangers among the gene family. The in silico cis-regulatory element analysis suggested diverse functions associated with light, stress and hormone responsiveness as well as endosperm- and meristem-specific gene expression. Further experiments are warranted to validate the in silico analysis of the predicted transporter gene family and elucidate the functions of Ca(2+) transporters in various biological processes.  相似文献   

11.
Streptococcus agalactiae or Group B Streptococcus (GBS) is a commensal bacterium of the human gastrointestinal and urogenital tracts as well as a leading cause of neonatal sepsis, pneumonia and meningitis. Maternal vaginal carriage is the main source for GBS transmission and thus the most important risk factor for neonatal disease. Several studies in eukaryotes identified a group of proteins natural resistance‐associated macrophage protein (NRAMP) that function as divalent cation transporters for Fe2+ and Mn2+ and confer on macrophages the ability to control replication of bacterial pathogens. Genome sequencing predicted potential NRAMP homologues in several prokaryotes. Here we describe for the first time, a pH‐regulated NRAMP Mn2+/Fe2+ transporter in GBS, designated MntH, which confers resistance to reactive oxygen species (ROS) and is crucial for bacterial growth and survival under low pH conditions. Our investigation implicates MntH as an important colonization determinant for GBS in the maternal vagina as it helps bacteria to adapt to the harsh acidic environment, facilitates bacterial adherence, contributes to the coexistence with the vaginal microbiota and plays a role in GBS intracellular survival inside macrophages.  相似文献   

12.
Magnesium is essential for all forms of life. It is the cofactor for many enzymes and plays a key role in many biological processes. Thus, the acquisition of Mg2+ is crucial for cell survival. The best characterized Mg2+ transporters to date belong to the 2-TM-GxN type family of transporters. The name indicates the two C-terminal transmembrane (TM) domains and a conserved GxN motif present in all members of this family towards the C-terminal end of TM1. In most members of the family, this conserved motif is generally YGMNF. The prototypical member of this family is CorA. Other characterized members of this family include Mrs2p, Alr, Mnr, AtMGT and ZntB. CorA is widely distributed throughout the prokaryotic world. It is the primary Mg2+ uptake system in most bacteria and many Archaea. A homolog, Mrs2p, is a eukaryotic mitochondrial Mg2+ channel. The Mrs2p related AtMGT transporters are found in plants and other eukaryotes. Alr1p and Mnr are Mg2+ transporters found in the plasma membrane of many fungi. ZntB is a bacterial member of the 2-TM-GxN family but mediates efflux of Zn2+ instead of influx of Mg2+. The recent crystal structure of a bacterial CorA shows that the structure of this family is unlike that of any other class of transporter or channel currently known.  相似文献   

13.
Phosphate transport in plants   总被引:19,自引:5,他引:14  
Smith  Frank W.  Mudge  Stephen R.  Rae  Anne L.  Glassop  Donna 《Plant and Soil》2003,248(1-2):71-83
Transport of inorganic phosphate (Pi) through plant membranes is mediated by a number of families of transporter proteins. Studies on the topology, function, regulation and sites of expression of the genes that encode the members of these transporter families are enabling roles to be ascribed to each of them. The Pht1 family, of which there are nine members in the Arabidopsis genome, includes proteins involved in the uptake of Pi from the soil solution and the redistribution of Pi within the plant. Members of this family are H2PO4 /H+ symporters. Most of the genes of the Pht1 family that are expressed in roots are up-regulated in P-stressed plants. Two members of the Pht1 family have been isolated from the cluster roots of white lupin. These same genes are expressed in non-cluster roots. The evidence available to date suggests that there are no major differences between the types of transport systems that cluster roots and non-cluster roots use to acquire Pi. Differences in uptake rates between cluster and non-cluster roots can be ascribed to more high-affinity Pi transporters in the plasma membranes of cluster roots, rather than any difference in the characteristics of the transporters. The efficient acquisition of Pi by cluster roots arises primarily from their capacity to increase the availability of soil Pi immediately adjacent to the rootlets by excretion of carboxylates, protons and phosphatases within the cluster. This paper reviews Pi transport processes, concentrating on those mediated by the Pht1 family of transporters, and attempts to relate those processes involved in Pi acquisition to likely Pi transport processes in cluster roots.  相似文献   

14.
Sodium–calcium exchangers (NCXs) are membrane transporters that play an important role in Ca2+ homeostasis and Ca2+ signaling. The recent crystal structure of NCX_Mj, a member of the NCX family from the archaebacterium Methanococcus jannaschii, provided insight into the atomistic details of sodium–calcium exchange. Here, we extend these findings by providing detailed functional data on purified NCX_Mj using solid supported membrane (SSM)–based electrophysiology, a powerful but unexploited tool for functional studies of electrogenic transporter proteins. We show that NCX_Mj is highly selective for Na+, whereas Ca2+ can be replaced by Mg2+ and Sr2+ and that NCX_Mj can be inhibited by divalent ions, particularly Cd2+. By directly comparing the apparent affinities of Na+ and Ca2+ for NCX_Mj with those for human NCX1, we show excellent agreement, indicating a strong functional similarity between NCX_Mj and its eukaryotic isoforms. We also provide detailed instructions to facilitate the adaption of this method to other electrogenic transporter proteins. Our findings demonstrate that NCX_Mj can serve as a model for the NCX family and highlight several possible applications for SSM-based electrophysiology.  相似文献   

15.
Two genes were isolated from a rice genomic library and the coding region of their corresponding cDNAs generated by RT-PCR. These single copy genes, designated ORYsa;Sultr1;1 and ORYsa;Sultr4;1, encode putative sulfate transporters. Both genes encode proteins with predicted topologies and signature sequences of the H+/SO42- symporter family of transporters and exhibit a high degree of homology to other plant sulfate transporters. ORYsa;Sultr1;1 is expressed in roots with levels of expression being strongly enhanced by sulfate starvation. In situ hybridization experiments revealed that ORYsa;Sultr1;1 expression is localized to the main absorptive region of roots. This gene probably encodes a transporter that is responsible for uptake of sulfate from the soil solution. In contrast, ORYsa;Sultr4;1 was expressed in both roots and shoots and was unresponsive to the sulfur status of the plant. The sequence of ORYsa;Sultr4;1 contains a possible plastid-targeting transit peptide which may indicate a role in transport of sulfate to sites of sulfate reduction in plastids. The role of the transporter encoded by ORYsa;Sultr4;1 is likely to be significantly different fromORYsa;Sultr1;1. These are the first reports of isolation of genes encoding sulfate transporters from rice and provide a basis for further studies involving sulfate transport.  相似文献   

16.
17.
New Glycoprotein-Associated Amino Acid Transporters   总被引:2,自引:0,他引:2  
The L-type amino acid transporter LAT1 has recently been identified as being a disulfide-linked ``light chain' of the ubiquitously expressed glycoprotein 4F2hc/CD98. Several LAT1-related transporters have been identified, which share the same putative 12-transmembrane segment topology and also associate with the single transmembrane domain 4F2hc protein. They display differing amino acid substrate specificities, transport kinetics and localizations such as, for instance, y+LAT1 which is localized at the basolateral membrane of transporting epithelia, and the defect of which causes lysinuric protein intolerance. The b0,+AT transporter which associates with the 4F2hc-related rBAT protein to form the luminal high-affinity diamino acid transporter defective in cystinuria, belongs to the same family of glycoprotein-associated amino acid transporters (gpaATs). These glycoprotein-associated transporters function as amino acid exchangers. They extend the specificity range of vectorial amino acid transport when located in the same membrane as carriers that unidirectionally transport one of the exchanged substrates. gpaATs belong to a phylogenetic cluster within the amino acid/polyamine/choline (APC) superfamily of transporters. This cluster, which we designate the LAT family (named after its first vertebrate member), includes some members from nematodes, yeast and bacteria. The latter of these proteins presumably lack association with a second subunit. In this review, we focus on the animal members of the LAT cluster that form, together with some of the nematode members, the family of glycoprotein-associated amino acid transporters (gpaAT family). Received: 20 July 1999/Revised: 7 September 1999  相似文献   

18.
The CDF family is a ubiquitous family that has been identified in prokaryotes, eukaryotes, and archaea. Members of this family are important heavy metal transporters that transport metal ions out of the cytoplasm. In this research, a full length cDNA named Oryza sativa Zn Transporter 1 (OZT1) that closely related to rat ZnT-2 (Zn Transporter 2) gene was isolated from rice. The OZT1 encoding a CDF family protein shares 28.2 % ~ 84.3 % of identities and 49.3 % ~ 90.9 % of similarities with other zinc transporters such as RnZnT-2, HsZnT-8, RnZnT-8 and AtMTP1. OZT1 was constitutively expressed in various rice tissues. The OZT1 expression was significantly induced both in the seedlings of japonica rice Nipponbare and indica rice IR26 in response to Zn2+ and Cd2+ treatments. Besides, OZT1 expression was also increased when exposed to other excess metals, such as Cu2+, Fe2+ and Mg2+. Subcellular localization analysis indicated that OZT1 localized to vacuole. Heterologous expression of OZT1 in yeast increased tolerance to Zn2+ and Cd2+ stress but not the Mg2+ stress. Together, OZT1 is a CDF family vacuolar zinc transporter conferring tolerance to Zn2+ and Cd2+ stress, which is important to transporting and homeostasis of Zn, Cd or other heavy metals in plants.  相似文献   

19.
20.
Ni homeostasis is essential for plant cell activity, but the mechanisms of Ni-transport and delivery are unknown. To elucidate the role of ZIP and NRAMP metal-transporters for Ni2+-transport and homeostasis, we cloned their homologous genes from the Ni hyperaccumulator Thlaspi japonicum, and investigated their Ni-transporting abilities by expression in yeast. The deduced amino acid sequences of the two Zip transporter genes (TjZnt1, TjZnt2) and one Nramp transporter gene cloned had high homologies with TcZNT1 and TcZNT2 of Thlaspi caerulescens and AtNRAMP4 of Arabidopsis thaliana, respectively, and were predicted as integral membrane proteins with 6 or 12 transmembrane domains. TjZNT1 and TjZNT2 had two long histidine-rich domains in the putative cytoplasmic domain between transmembrane domains III and IV. TjNRAMP4 conserved a consensus transporter motif between transmembrane domains VIII and IX. The yeast transformed with TjZNT1 or TjZNT2 showed a marked increase in Ni2+ tolerance with the gene expression. In contrast, the expression of TjNramp4 caused elevation of Ni2+ sensitivity and Ni2+ concentration. These data suggest that ZIP/NRAMP transporters participate in Ni2+ homeostasis of Ni hyperaccumulator plants. TjZNT1 had Zn2+-, Cd2+- and Mn2+-transporting abilities and TjZNT2 also had Zn2+- and Mn2+-transporting abilities, but TjNRAMP4 could transport Ni2+ but not Zn2+, Cd2+ or Mn2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号