首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IgA protease is secreted by various mucosal pathogenic bacteria which can cleave human immunoglobulin A1 (IgA1) in its hinge region. In addition to be considered as a virulence factor, it's reported that IgA protease can also be used for IgA nephropathy (IgAN) treatment. Our previous study identified bacteria H. influenzae 49247 expressed high activity of IgA protease with promised application in IgAN therapy. In this study, we cloned the IgA protease gene of H. influenzae 49247 with degenerate primers. Alignment analysis indicated that H. influenzae 49247 IgA protease showed unique DNA and amino acid sequence but with typical endopeptidase domain and beta transporter domain compared with known IgA proteases from the same species. To facilitate expression and purification, the H. influenzae 49247 IgA protease gene was sub-cloned into the pET28-A(+) vector with insertion of a 6xHis tag downstream of the endopeptidase domain and upstream of the potential autocleavage site. The recombined IgA protease can be constitutively expressed in E. coli and secreted into the culture medium. With a simple nickel affinity binding, the secreted IgA protease can be purified with high purity (95%) and a molecular weight of about 130 kDa. The identity of the IgA protease was validated by the presence of 6xHis tag in the purified protein by western blotting and its ability to cleave human IgA1 molecule. Collectively, the successful cloning, expression and purification of H. influenzae 49247 IgA protease will augment its therapeutic study in IgAN treatment.  相似文献   

2.
In this work, a multifunctional expression cassette, termed Multitags, combining different and complementary functionalities, was designed and used to monitor the expression and the purification of two model proteins (Pfu DNA polymerase and Myosin-VIIa- and Rab-Interracting protein : MyRIP). Multitags contains two affinity purification tags, a polyhistidine sequence (10× His) and the streptavidin-binding peptide (SBP) and as a marker tag the heme-binding domain of rat cytochrome b5 followed by the TEV cleavage site. Using the Multitags as fusion partner, more than 90 % of both fusion proteins were produced in soluble form when expressed in Escherichia coli KRX. In addition, high purity (99 %) of recombinant proteins was achieved after two consecutive affinity purification steps. The expression cassette also demonstrated an accurate monitoring capability comparable to that of a dual recognition-based method. The choice of the SBP tag was considered as an integral process that included a method for tag removal. Thus, an immobilized TEV protease fixed on streptavidin–agarose matrix was used for the cleavage of fusion proteins. After digestion, both unprocessed fusion proteins and Multitags were retained on the proteolytic column via their SBP sequence, allowing cleavage and recovery of target proteins on one step. This combined approach may accelerate the development of optimized production processes, while insuring high product quality and a low production cost.  相似文献   

3.
Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases.  相似文献   

4.
Ubiquitin-like protease 1 (Ulp1) of Saccharomyces cerevisiae emerges as a fundamental tool to obtain the natural N-terminal target protein by cleavage of the small ubiquitin-related modifier (SUMO) fusion protein. However, the costly commercial Ulp1 and its complicated procedures limit its application in the preparation of the target protein with natural N-terminal sequence. Here, we describe the preparation of bioactive codon-optimized recombinant truncated Ulp1 (Leu403-Lys621) (rtUlp1) of S. cerevisiae in Escherichia coli using only one-step with Ni–NTA affinity chromatograph, and the application of rtUlp1 to cleave the SUMO fusion protein by simply mixing the purified rtUlp1, SUMO fusion protein and DL-Dithiothreitol in Tris–HCl buffer. The optimal expression level of non-fusion protein rtUlp1 accounts for approximately 50 % of the total cellular protein and 36 % of the soluble form by addition of isopropyl β-D-l-thiogalactopyranoside at a final concentration of 0.4 mM at 18 °C for 20 h. The purification of target protein rtUlp1 was conducted by Ni–NTA affinity chromatography. The final yield of rtUlp1 was 45 mg/l in flask fermentation with a purity up to 95 %. Furthermore, the high purity of rtUlp1 could effectively cleave the SUMO-tTβRII fusion protein (SUMO gene fused to truncated transforming growth factor-beta receptor type II gene) with the above simplified approach, and the specific activity of the rtUlp1 reached up to 2.8 × 104 U/mg, which is comparable to the commercial Ulp1. The preparation and application strategy of the rtUlp1 with commonly available laboratory resources in this study will be convenient to the cleavage of the SUMO fusion protein to obtain the natural N-terminal target protein, which can be implemented in difficult-to-express protein functional analysis.  相似文献   

5.
We have studied the effect of solubilising N-terminal fusion proteins on the yield of target protein after removal of the fusion partner and subsequent purification using immobilised metal ion affinity chromatography. We compared the yield of 45 human proteins produced from four different expression vectors: three having an N-terminal solubilising fusion protein (the GB1-domain, thioredoxin, or glutathione S-transferase) followed by a protease cleavage site and a His tag, and one vector having only an N-terminal His tag. We have previously observed a positive effect on solubility for proteins produced as fusion proteins compared to proteins produced with only a His tag in Escherichia coli. We find this effect to be less pronounced when we compare the yields of purified target protein after removal of the solubilising fusion although large target-dependent variations are seen. On average, the GB1+His fusion gives significantly higher final yields of protein than the thioredoxin+His fusion or the His tag, whereas GST+His gives lower yields. We also note a strong correlation between solubility and target protein size, and a correlation between solubility and the presence of peptide fragments that are predicted to be natively disordered.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

6.
In this work, a reliable protocol was designed to rapidly express and purify a microbial chymotrypsin(ogen) as a useful alternative to using animal proteases. The cDNA encoding for chymotrypsinogen from the deuteromycete Metarhizium anisopliae (chy1) was overexpressed in an Origami2(DE3) E. coli strain deficient in thioredoxin reductase and glutathione reductase activities, thus possibly allowing disulfide exchange. By using a quick purification protocol, in which the hexahistidine tag was added at the C-terminal end of the protease, the recombinant CHY1 protein could be purified in a single step on an Ni-NTA column as a mixture of 19.5- and 15-kDa mature active forms and did not require further activation/maturation steps. This expression and purification procedure offers an easier and faster means of producing recombinant CHY1 chymotrypsin than that previously described for Pichia pastoris. The kinetic properties could be characterized and CHY1 chymotrypsin was demonstrated to efficiently catalyze N-acetylated l-phenylalanine and l-tyrosine methyl ester hydrolysis.  相似文献   

7.
Affinity tags as fusions to the N- or C-terminal part of proteins are valuable tools to facilitate the production and purification of proteins. In many cases, there may be the necessity to remove the tag after protein preparation to regain activity. Removal of the tag is accomplished by insertion of a unique amino acid sequence that is recognized and cleaved by a site specific protease. Here, we report the construction of an expression vector set that combines N- or C-terminal fusion to either a hexahistidine tag or Streptag with the possibility of tag removal by factor Xa or recombinant tobacco etch virus protease (rTEV), respectively. The vector set offers the option to produce different variants of the protein of interest by cloning the corresponding gene into four different Escherichia coli expression vectors. Either immobilized metal affinity chromatography or streptactin affinity chromatography can be used for the one-step purification. Furthermore, we show the successful application of the expression vector for C-terminal hexahistidine tagging. The expression and purification of His-tagged L-2-hydroxyisocaproate dehydrogenase yields fully active enzyme. The tag removal is here accomplished by a derivative of rTEV.  相似文献   

8.
Helicobacter pylori (H. pylori) shows increasingly enhanced resistance to various antibiotics, and its eradication has become a major problem in medicine. The antimicrobial peptide PGLa-AM1 is a short peptide with 22 amino acids and exhibits strong antibacterial activity. In this study, we investigated whether it has anti-H. pylori activity for the further development of anti-H. pylori drugs to replace existing antibiotics. However, the natural antimicrobial peptide PGLa-AM1 shows a low yield and is difficult to separate, limiting its application. A good strategy to solve this problem is to express the antimicrobial peptide PGLa-AM1 using gene engineering at a high level and low cost. For getting PGLa-AM1 with native structure, in this study, a specific protease cleavage site of tobacco etch virus (TEV) was designed before the PGLa-AM1 peptide. For convenience to purify and identify high-efficiency expression PGLa-AM1, the PGLa-AM1 gene was fused with the polyhedrin gene of Bombyx mori (B. mori), and a 6 × His tag was designed to insert before the amino terminus of the fusion protein. The fusion antibacterial peptide PGLa-AM1 (FAMP) gene codon was optimized, and the gene was synthesized and cloned into the Escherichia coli (E. coli) pET-30a (+) expression vector. The results showed that the FAMP was successfully expressed in E. coli. Its molecular weight was approximately 34 kDa, and its expression level was approximately 30 mg/L. After the FAMP was purified, it was further digested with TEV protease. The acquired recombinant antimicrobial peptide PGLa-AM1 exerted strong anti-H. pylori activity and therapeutic effect in vitro and in vivo.  相似文献   

9.
Recombinant wild-type protease of human immunodeficiency virus, type [(HIV-1) expressed in E. coli was purified by pepstatin A affinity chromatography. An 88-fold purification was achieved giving a protease preparation with a specific enzymatic activity of approximately 3700 pmol/min/μg. Two proteolytically inactive HIV-1 mutant proteases (Arg-87 → Lys; Asn-88 → Glu) were found to bind to pepstatin A agarose, and they were purified as the wild-type protease. A third mutant protease (Arg-87 → Glu) was apparently unable to bind to pepstatin A under similar conditions. Binding to pepstatin A indicates the binding ability of the substrate binding site and the ability to form dimers. These features may be used to purify and to characterize other mutated HIV-1 proteases.  相似文献   

10.
Various constructs of the human immunodeficiency virus, type 1 (HIV-1) protease containing flanking Pol region sequences were expressed as fusion proteins with the maltose-binding protein of the malE gene of Escherichia coli. The full-length fusion proteins did not exhibit self-processing in E. coli, thereby allowing rapid purification by affinity chromatography on cross-linked amylose columns. Denaturation of the fusion protein in 5 M urea, followed by renaturation, resulted in efficient site-specific autoprocessing to release the 11-kDa protease. Rapid purification involving two column steps gave an HIV-1 protease preparations of greater than 95% purity (specific activity approximately 8500 pmol.min-1.micrograms protease-1) with an overall yield of about 1 mg/l culture. Incubation of an inactive mutant protease fusion protein with the purified wild-type protease resulted in specific trans cleavage and release of the mutant protease. Analysis of products of the HIV-1 fusion proteins containing mutations at either the N- or the C-terminal protease cleavage sites indicated that blocking one of the cleavage sites influences the cleavage at the non-mutated site. Such mutated full-length and truncated protease fusion proteins possess very low levels of proteolytic activity (approximately 5 pmol.min-1.micrograms protein-1).  相似文献   

11.
Expressing proteins with fusion partners improves yield and simplifies the purification process. We developed a novel fusion partner to improve the secretion of heterologous proteins that are otherwise poorly excreted in yeast. The VOA1 (YGR106C) gene of Saccharomyces cerevisiae encodes a subunit of vacuolar ATPase. We found that C-terminally truncated Voa1p was highly secreted into the culture medium, even when fused with rarely secreted heterologous proteins such as human interleukin-2 (hIL-2). Deletion mapping of C-terminally truncated Voa1p, identified a hydrophilic 28-amino acid peptide (HL peptide) that was responsible for the enhanced secretion of target protein. A purification tag and a protease cleavage site were added to use HL peptide as a multi-purpose fusion partner. The utility of this system was tested via the expression and purification of various heterologous proteins. In many cases, the yield of target proteins fused with the peptide was significantly increased, and fusion proteins could be directly purified with affinity chromatography. The fusion partner was removed by in vitro processing, and intact proteins were purified by re-application of samples to affinity chromatography.  相似文献   

12.
In this work, a reliable protocol was designed to rapidly express and purify a microbial chymotrypsin(ogen) as a useful alternative to using animal proteases. The cDNA encoding for chymotrypsinogen from the deuteromycete Metarhizium anisopliae (chy1) was overexpressed in an Origami2(DE3) E. coli strain deficient in thioredoxin reductase and glutathione reductase activities, thus possibly allowing disulfide exchange. By using a quick purification protocol, in which the hexahistidine tag was added at the C-terminal end of the protease, the recombinant CHY1 protein could be purified in a single step on an Ni-NTA column as a mixture of 19.5- and 15-kDa mature active forms and did not require further activation/maturation steps. This expression and purification procedure offers an easier and faster means of producing recombinant CHY1 chymotrypsin than that previously described for Pichia pastoris. The kinetic properties could be characterized and CHY1 chymotrypsin was demonstrated to efficiently catalyze N-acetylated L-phenylalanine and L-tyrosine methyl ester hydrolysis.  相似文献   

13.
For proteins of higher eukaryotes, such as plants, which have large genomes, recombinant protein expression and purification are often difficult. Expression levels tend to be low and the expressed proteins tend to misfold and aggregate. We tested seven different expression vectors in Escherichia coli for rapid subcloning of rice genes and for protein expression and solubility levels. Each expressed gene product has an N-terminal fusion protein and/or tag, and an engineered protease site upstream of the mature rice protein. Several different fusion proteins/tags and protease sites were tested. We found that the fusion proteins and the protease sites have significant and varying effects on expression and solubility levels. The expression vector with the most favorable characteristics is pDEST-trx. The vector, which is a modified version of the commercially available expression vector, pET-32a, contains an N-terminal thioredoxin fusion protein and a hexahistidine tag, and is adapted to the Gateway expression system. However, addition of an engineered protease site could drastically change the expression and solubility properties. We selected 135 genes corresponding to potentially interesting rice proteins, transferred the genes from cDNAs to expression vectors, and engineered in suitable protease sites N-terminal to the mature proteins. Of 135 genes, 131 (97.0%) could be expressed and 72 (53.3%) were soluble when the fusion proteins/tags were present. Thirty-eight mature-length rice proteins and domains (28.1%) are suitable for NMR solution structure studies and/or X-ray crystallography. Our expression systems are useful for the production of soluble plant proteins in E. coli to be used for structural genomics studies.  相似文献   

14.
Plant proteases with excellent catalytical properties perform many functions in biological systems. A novel plant protease Vallaris solanacea, was identified. Its proteolytic activity was screened using the substrate casein. This protein activity was specifically inhibited by p-chloromercuribenzoate, which showed that it is a cysteine protease. Preliminary investigations such as pH effect and temperature dependence on the caseinolytic activity of crude protease were done. Stability towards temperature and pH were also evaluated. The activity curves drawn in relation to pH, temperature and stability suggested the presence of one protease in the latex of Vallaris solanacea. In the present study, separation and purification of the latex cysteine protease solanain from Vallaris solanacea to a state of near homogeneity was also done using ion exchange and size exclusion chromatography. SDS PAGE was used to determine molecular weight of the solanain (28–29 kDa). The molecular weight was confirmed as 28.9 kDa using MALDI-TOF. Purified protease was named solanain and it was further characterized. An internal tryptic fragment was identified by MALDI-TOF, and this peptide showed a homology (66% sequence similarity) with target sequence of cysteine endopeptidase from Ricinus communis.  相似文献   

15.
Affinity tags such as polyhistidine greatly facilitate recombinant protein production. The solubility of integral membrane proteins is maintained by the formation of protein-detergent complexes (PDCs), with detergent present at concentration above its critical micelle concentration (CMC). Removal of the affinity tag necessitates inclusion of an engineered protease cleavage site. A commonly utilized protease for tag removal is tobacco etch virus (TEV) protease. TEV is available in a recombinant form (rTEV) and frequently contains its own polyhistidine affinity tag for removal after use in enzymatic digestion. Proteolytic cleavage of the tagged domain is carried out by incubation of the protein with rTEV protease. We have observed that the efficiency of rTEV digestion decreases significantly in the presence of a variety of detergents utilized in purification, crystallization, and other biochemical studies of integral membrane proteins. This reduction in protease activity is suggestive of detergent-induced inhibition of rTEV. To test this hypothesis, we examined the effects of detergents upon the rTEV proteolytic digestion of a soluble fusion protein, alpha(1) platelet activating factor acetylhydrolase (PAFAHalpha(1)). Removal of a hexahistidine amino-terminal affinity tag has been characterized in the presence of 16 different detergents at concentrations above their respective CMCs. Our data indicate that half of the detergents tested reduce the activity of rTEV and that these detergents should be avoided or otherwise accounted for during rTEV digestion of recombinant integral membrane proteins.  相似文献   

16.
As an important class of proteases, serine proteases are required to show high activity under diverse conditions, especially at high temperatures. In the current study, two serine proteases SP348 and SP404 were analyzed by different bioinformatics tools. Both proteins are comprised of a trypsin domain and a PDZ domain, and belong to the trypsin family of proteases. The proteins were successfully expressed with Trx-tags as soluble proteins in the specialized Escherichia coli Rosetta-gami B(DE3)pLysS strain. A simple three-step purification protocol involving heat treatment, Ni–NTA purification and gel filtration was adopted to purify SP404. The molecular weight of recombinant SP404 was about 64 kDa. According to the circular dichroism spectroscopy analysis, SP404 is thermostable at 70 °C with alpha-helix, beta-sheet and random coil contents of about 8, 22 and 70 %, respectively. Our findings may broaden the range of microorganism-derived proteases and have a wide potential for industrial and fundamental studies.  相似文献   

17.
We developed a method for efficient chromosome tagging in Pichia pastoris, using a useful tandem affinity purification (TAP) tag. The TAP tag, designated and used here as the THF tag, contains a thrombin protease cleavage site for removal of the TAP tag and a hexahistidine sequence (6× His) followed by three copies of the FLAG sequence (3× FLAG) for affinity purification. Using this method, THF-tagged RNA polymerases I, II, and III were successfully purified from P. pastoris. The method also enabled us to purify the tagged RNA polymerase II on a large scale, for its crystallization and preliminary X-ray crystallographic analysis. The method described here will be widely useful for the rapid and large-scale preparation of crystallization grade eukaryotic multi-subunit protein complexes.  相似文献   

18.
Recombinant Crocodylus siamensis hemoglobin (cHb) has been constructed and expressed using Escherichia coli as the expression system in conjunction with a trigger factor from the Cold-shock system as the fusion protein. While successful processing as soluble protein in E. coli was achieved, the net yields of active protein from downstream purification processes remained still unsatisfactory. In this study, cHb was constructed and expressed in the eukaryotic expression system Pichia pastoris. The results showed that cHb was excreted from P. pastoris as a soluble protein after 72 h at 25 °C. The amino acid sequence of recombinant cHb was confirmed using LC–MS/MS. Indeed, the characteristic of Hb was investigated by external heme incorporation. The UV–Vis profile showed a specific pattern of the absorption at 415 nm, indicating the recombinant cHb was formed complex with heme, resulting in active oxyhemoglobin (OxyHb). This result suggests that the heme molecules were fully combined with heme binding site of the recombinant cHb, thus producing characteristic red color for the OxyHb at 540 and 580 nm. The results revealed that the recombinant cHb was prosperously produced in P. pastoris and exhibited a property as protein–ligand binding. Thus, our work described herein offers a great potential to be applied for further studies of heme-containing protein expression. It represents further pleasing option for protein production and purification on a large scale, which is important for determination and characterization of the authenticity features of cHb proteins.  相似文献   

19.
The protease of murine leukemia virus (MLV) was cloned into pMal-c2 vector, expressed in fusion with maltose-binding protein (MBP), and purified to homogeneity after Factor Xa cleavage of the chimeric protein. Substantial degradation of the fusion protein was observed during expression, which severely diminished the yield. The degree of degradation of the fusion protein was even more pronounced when a single-chain form of the MLV protease was cloned after the gene coding for MBP. To increase the yield, a hexahistidine tag with an additional Factor Xa cleavage site was cloned after the protease and nickel chelate affinity chromatography was used as the first purification step. The modified procedure resulted in substantially higher yield as compared to the original procedure. The degradation of hexahistidine-tagged active site mutant MLV protease was very low and comparable to that obtained with hexahistidine-tagged MBP, but purified MLV protease alone was not able to degrade purified MBP, suggesting that during expression the active MLV protease may activate bacterial proteases which appear to be responsible for the degradation of the fusion proteins.  相似文献   

20.
We introduce a new method for purifying recombinant proteins expressed in bacteria using a highly specific, inducible, self-cleaving protease tag. This tag is comprised of the Vibrio cholerae MARTX toxin cysteine protease domain (CPD), an autoprocessing enzyme that cleaves exclusively after a leucine residue within the target protein-CPD junction. Importantly, V. cholerae CPD is specifically activated by inositol hexakisphosphate (InsP6), a eukaryotic-specific small molecule that is absent from the bacterial cytosol. As a result, when His6-tagged CPD is fused to the C-terminus of target proteins and expressed in Escherichia coli, the full-length fusion protein can be purified from bacterial lysates using metal ion affinity chromatography. Subsequent addition of InsP6 to the immobilized fusion protein induces CPD-mediated cleavage at the target protein-CPD junction, releasing untagged target protein into the supernatant. This method condenses affinity chromatography and fusion tag cleavage into a single step, obviating the need for exogenous protease addition to remove the fusion tag(s) and increasing the efficiency of tag separation. Furthermore, in addition to being timesaving, versatile, and inexpensive, our results indicate that the CPD purification system can enhance the expression, integrity, and solubility of intractable proteins from diverse organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号