首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A new anti-Prelog short-chain dehydrogenase/reductase (SDR) encoding gene lcsdr was cloned from Lactobacillus composti DSM 18527, and heterologously expressed in Escherichia coli. LcSDR is nicotinamide adenine dinucleotide phosphate (NADPH)-dependent and has a molecular weight of approximately 30 kDa. The optimal pH and temperature were 6.5 and 30?°C, respectively. The maximal reaction rate Vmax was 133.9 U mg?1; the Michaelis–Menten constant K m of LcSDR were 0.345 mM for acetophenone (1a), and 0.085 mM for NADPH. Through introducing an EsGDH-catalyzed NADPH regeneration system, a biocatalytic process for (R)-1-phenylethanol ((R)-1b) was developed with outstanding time–space yield. Under the optimized conditions, 50 g l?1 1a was converted to (R)-1b in 2 h with a yield of 93.8%, enantiomeric excess of product (e.e.p) above 99% and space–time yield of 562.8 g l?1 d?1.  相似文献   

3.
We report the bifunctional activity of the native ent-kaurene oxidase from Montanoa tomentosa (MtKO) and its N-terminal modified version (LMtKO) for producing both isokaurenoic acid and kaurenoic acid in Saccharomyces cerevisiae. The Km app of MtKO showed more affinity for ent-kaurene (80.5 µM) than for isokaurene (96.4 µM). Interestingly, LMtKO exhibited an increase of the affinity for isokaurene (79.6 µM) but simultaneously showed an enhancement in the Vmax for both substrates (32.6–38.9 μmol?1 mg?1 h?1). Biotransformation assays using isokaurene and yeasts containing LMtKO, resulted in 70% more production of isokaurenoic acid, when compared with the yields from yeasts expressing MtKO. Likewise, biotransformation assays using geranylgeraniol and double transformed cells of S. cerevisiae containing an optimized version the ent-kaurene synthase from Phaeosphaeria sp. L487 (optKS) and the LMtKO, produced ~25% more kaurenoic acid than the yeasts containing optKS and MtKO. The isokaurenoic acid synthesized by transgenic yeasts was tested for its anti-acetylcholinesterase and antimicrobial properties. Isokaurenoic acid generated a non-competitive inhibition on acetylcholinesterase, decreasing the Vmax from 0.0249 to 0.0104 mM min?1 but not affecting the Km (0.714 mM). The same diterpene showed antifungal activity against Fusarium oxysporum, Aspergillus niger and Phytophtora infestans with a minimum inhibitory concentration of 15.3, 18.3 and 19.2 µg mL?1, respectively.  相似文献   

4.
Studies of substrate specificity revealed that the D-aminoacylase of Rhodococcus armeniensis AM6.1 strain exhibits absolute stereospecificity to the D-stereoisomers of N-acetyl-amino acids. The enzyme is the most active reacted with N-acetyl-D-methionine, as well as with aromatic and hydrophobic N-acetylamino acids and interacts weakly with the basic substrates. It is practically not reacted with acidic and hydrophilic N-acetyl-amino acids. Michaelis constants (Km) and maximum reaction velocities (Vmax) were calculated, using linear regression analysis, for the following substrates: N-acetyl-D-methionine, N-acetyl-D-alanine, N-acetyl-D-phenylalanine, N-acetyl-D-tyrosine, N-acetyl-D-valine, N-acetyl-D-oxyvaline, N-acetyl- D-leucine. Substrate inhibition of D-aminoacylase was displayed with N-acetyl-D-leucine (Ks = 35.5 ± 28.3 mM) and N-acetyl-DL-tyrosine (Ks = 15.8 ± 4.5 mM). Competitive inhibition of the enzyme with product–acetic acid (Ki = 104.7 ± 21.7 mM, Km = 2.5 ± 0.5 mM, Vmax = 25.1 ± 1.5 U/mg) was observed.  相似文献   

5.
The Caulobacter crescentus (NA1000) xynB5 gene (CCNA_03149) encodes a predicted β-glucosidase-β-xylosidase enzyme that was amplified by polymerase chain reaction; the product was cloned into the blunt ends of the pJet1.2 plasmid. Analysis of the protein sequence indicated the presence of conserved glycosyl hydrolase 3 (GH3), β-glucosidase-related glycosidase (BglX) and fibronectin type III-like domains. After verifying its identity by DNA sequencing, the xynB5 gene was linked to an amino-terminal His-tag using the pTrcHisA vector. A recombinant protein (95 kDa) was successfully overexpressed from the xynB5 gene in E. coli Top 10 and purified using pre-packed nickel-Sepharose columns. The purified protein (BglX-V-Ara) demonstrated multifunctional activities in the presence of different substrates for β-glucosidase (pNPG: p-nitrophenyl-β-D-glucoside) β-xylosidase (pNPX: p-nitrophenyl-β-D-xyloside) and α-arabinosidase (pNPA: p-nitrophenyl-α-L-arabinosidase). BglX-V-Ara presented an optimal pH of 6 for all substrates and optimal temperature of 50 °C for β-glucosidase and α-l-arabinosidase and 60 °C for β-xylosidase. BglX-V-Ara predominantly presented β-glucosidase activity, with the highest affinity for its substrate and catalytic efficiency (Km 0.24 ± 0.0005 mM, Vmax 0.041 ± 0.002 µmol min?1 mg?1 and Kcat/Km 0.27 mM?1 s?1), followed by β-xylosidase (Km 0.64 ± 0.032 mM, Vmax 0.055 ± 0.002 µmol min?1 mg?1 and Kcat/Km 0.14 mM?1s?1) and finally α-l-arabinosidase (Km 1.45 ± 0.05 mM, Vmax 0.091 ± 0.0004 µmol min?1 mg?1 and Kcat/Km 0.1 mM?1 s?1). To date, this is the first report to demonstrate the characterization of a GH3-BglX family member in C. crescentus that may have applications in biotechnological processes (i.e., the simultaneous saccharification process) because the multifunctional enzyme could play an important role in bacterial hemicellulose degradation.  相似文献   

6.
Laccases have received considerable attention in recent decades because of their ability to oxidise a large spectrum of phenolic and non-phenolic organic substrates and highly recalcitrant environmental pollutants. In this research, a laccase gene from Colletotrichum lagenarium was chemically synthesised using yeast bias codons and expressed in Pichia pastoris. The molecular mass of the recombinant laccase was estimated to be 64.6 kDa by SDS–PAGE, and the enzyme exhibited maximum activity at pH 3.6–4.0 but more stability in buffer with higher pH (>pH 3.6). The optimal reaction temperature of the enzyme was 40 °C, beyond which stability significantly decreased. By using 2,2′-azino-bis-(3-ethylbenzothiazoline)-6-sulphonate (ABTS) as a substrate, K m and V max values of 0.34 mM and 7.11 mM min?1 mg?1, respectively, were obtained. Using ABTS as a mediator, the laccase could oxidise hydroquinone to p-benzoquinone and decolourise the synthetic dyes malachite green, crystal violet and orange G. These results indicated that the laccase could be used to treat industrial effluents containing artificial dyes.  相似文献   

7.
Cytochrome P450 (CYP) 2C19 is essential for the metabolism of clinically used drugs including omeprazole, proguanil, and S-mephenytoin. This hepatic enzyme exhibits genetic polymorphism with inter-individual variability in catalytic activity. This study aimed to characterise the functional consequences of CYP2C19*23 (271 G>C, 991 A>G) and CYP2C19*24 (991 A>G, 1004 G>A) in vitro. Mutations in CYP2C19 cDNA were introduced by site-directed mutagenesis, and the CYP2C19 wild type (WT) as well as variants proteins were subsequently expressed using Escherichia coli cells. Catalytic activities of CYP2C19 WT and those of variants were determined by high performance liquid chromatography-based essay employing S-mephenytoin and omeprazole as probe substrates. Results showed that the level of S-mephenytoin 4′-hydroxylation activity of CYP2C19*23 (V max 111.5 ± 16.0 pmol/min/mg, K m 158.3 ± 88.0 μM) protein relative to CYP2C19 WT (V max 101.6 + 12.4 pmol/min/mg, K m 123.0 ± 19.2 μM) protein had no significant difference. In contrast, the K m of CYP2C19*24 (270.1 ± 57.2 μM) increased significantly as compared to CYP2C19 WT (123.0 ± 19.2 μM) and V max of CYP2C19*24 (23.6 ± 2.6 pmol/min/mg) protein was significantly lower than that of the WT protein (101.6 ± 12.4 pmol/min/mg). In vitro intrinsic clearance (CLint = V max/K m) for CYP2C19*23 protein was 85.4 % of that of CYP2C19 WT protein. The corresponding CLint value for CYP2C19*24 protein reduced to 11.0 % of that of WT protein. These findings suggested that catalytic activity of CYP2C19 was not affected by the corresponding amino acid substitutions in CYP2C19*23 protein; and the reverse was true for CYP2C19*24 protein. When omeprazole was employed as the substrate, K m of CYP2C19*23 (1911 ± 244.73 μM) was at least 100 times higher than that of CYP2C19 WT (18.37 ± 1.64 μM) and V max of CYP2C19*23 (3.87 ± 0.74 pmol/min/mg) dropped to 13.4 % of the CYP2C19 WT (28.84 ± 0.61 pmol/min/mg) level. Derived from V max/K m, the CLint value of CYP2C19 WT was 785 folds of CYP2C19*23. K m and V max values could not be determined for CYP2C19*24 due to its low catalytic activity towards omeprazole 5′-hydroxylation. Therefore, both CYP2C19*23 and CYP2C19*24 showed marked reduced activities of metabolising omeprazole to 5-hydroxyomeprazole. Hence, carriers of CYP2C19*23 and CYP2C19*24 allele are potentially poor metabolisers of CYP2C19-mediated substrates.  相似文献   

8.
We used a recombinant, permeabilized E. coli Nissle strain harbouring the plu3263 gene cluster from Photorhabdus luminescens for the synthesis of luminmide type cyclic pentapeptides belonging to the class of nonribosomally biosynthesized peptides (NRP). Cells could be fully permeabilized using 1 % v/v toluene. Synthesis of luminmides was increased fivefold when 0.3 mM EDTA was added to the substrate mixture acting as an inhibitor of metal proteases. Luminmide formation was studied applying different amino acid concentrations. Apparent kinetic parameters for the synthesis of the main product luminmide A from leucine, phenylalanine and valine were calculated from the collected data. K s app values ranged from 0.17 mM for leucine to 0.57 mM for phenylalanine, and r max app was about 3 × 10?8 mmol min?1(g CDW)?1). By removing phenylalanine from the substrate mixture, the formation of luminmide A was reduced tenfold while luminmide B was increased from 50 to 500 μg/l becoming the main product. Two new luminmides were synthesized in this study. Luminmide H incorporates tryptophan replacing phenylalanine in luminmide A. In luminmide I, leucine was replaced with 4,5-dehydro-leucine, a non-proteinogenic amino acid fed to the incubation mixture. Our study shows new opportunities for increasing the spectrum of luminmide variants produced, for improving production selectivity and for kinetic in vitro studies of the megasynthetases.  相似文献   

9.

Objectives

To find an l-glutamate oxidase (LGox), to be used for the quantitative analysis of l-glutamic acid, an lgox gene encoding LGox from Streptomyces diastatochromogenes was isolated, cloned and characterized.

Results

The gene had an ORF of 1974 bp encoding a protein of 657 amino acid residues. In comparison to the LGox precursor, the proteinase K-treated enzyme exhibited improved affinity to substrate and with a K m of 0.15 mM and V max of 62 μmol min?1 mg?1. The 50% thermal inactivation temperature of the proteinase K treated enzyme was increased from 50 to 70 °C. The enzyme exhibited strict specificity for l-glutamate.

Conclusions

LGox treated by proteinase K exhibited strict specificity for l-glutamate, good thermostability and high substrate affinity.
  相似文献   

10.
Long non-coding RNAs (lncRNAs), which are longer than >?200 nt, perform various functions in a variety of important biological processes. The aim of this study is the investigation of relative expression levels of AK372815 putative pyridoxal reductase (PLR) gene and sense lncRNA AK370814 on four barley genotypes (Hasat, Beysehir 99, Konevi 98 and Tarm 92) in response to 150 mM salinity application during 3 days post-germination. Seeds were placed randomly in petri dishes containing (a) only H2O (control), (b) 150 mM NaCl, for 72 h. RNA isolation was carried out using TriPure® reagent from 150 mM salt-treated root and shoot samples. Relative expression levels of AK372815 PLR and sense lncRNA AK370814 were determined by qPCR. Results demonstrated that salinity affected the expression levels of both AK372815 PLR gene and sense lncRNA AK370814 during germination. Although expression levels of AK372815 PLR tended to be down-regulated under salinity, expression levels of sense lncRNA AK370814 were up-regulated. Another goal of this study is improvement of alternative approach to NGS technologies for determination of relative expression levels of sense lncRNAs under particular circumstances. This is the first report that demonstrates a relationship between lncRNA and vitamin B6 salvage pathway.  相似文献   

11.
Heparinases are widely used for production of clinically and therapeutically important bioactive oligosaccharides and in analyzing the polydisperse, heterogeneous, and complex structures of heparin/heparan sulfate. In the present study, the gene (1911 bp) encoding heparinase II/III of family 12 polysaccharide lyase (PsPL12a) from Pseudopedobacter saltans was cloned, expressed, and biochemically and functionally characterized. The purified enzyme PsPL12a of molecular size approximately 76 kDa exhibited maximum activity in the temperature range 45–50 °C and at pH 6.0. PsPL12a gave maximum activity at 1% (w/v) heparin under optimum conditions. The kinetic parameters, K m and Vmax, for PsPL12a were 4.6?±?0.5 mg/ml and 70?±?2 U/mg, respectively. Ten millimolars of each Mg2+ and Mn2+ ions enhanced PsPL12a activity by 80%, whereas Ni2+ inhibited by 75% and Co2+ by 10%, and EDTA completely inactivated the enzyme. Protein melting curve of PsPL12a gave a single peak at 55 °C and 10 mM Mg2+ ions and shifted the peak to 60 °C. The secondary structure analysis of PsPL12a by CD showed 65.12% α-helix, 11.84% β-strand, and 23.04% random coil. The degradation products of heparin by PsPL12a analyzed by ESI-MS spectra displayed peaks corresponding to heparin di-, tetra-, penta-, and hexa-saccharides revealing the endolytic mode of enzyme action. Heparinase II/III (PsPL12a) from P. saltans can be used for production of low molecular weight heparin oligosaccharides for their utilization as anticoagulants. This is the first report on heparinase cloned from P. saltans.  相似文献   

12.
This study reports the purification and characterization of an extracellular haloalkaline serine protease from the moderately halophilic bacterium, Bacillus iranensis, strain X5B. The enzyme was purified to homogeneity by acetone precipitation, ultrafiltration and carboxymethyl (CM) cation exchange chromatography, respectively. The purified protease was a monomeric enzyme with a relative molecular mass of 48–50 kDa and it was inhibited by PMSF indicating that it is a serine-protease. The optimum pH, temperature and NaCl concentration were 9.5, 35 °C and 0.98 M, respectively. The enzyme showed a significant tolerance to salt and alkaline pH. It retained approximately 50 % of activity at 2.5 M NaCl and about 70 % of activity at highly alkaline pH of 11.0; therefore, it was a moderately halophilic and also can be activated by metals, especially by Ca2+. The specific activity of the purified protease was measured to be 425.23 μmol of tyrosine/min per mg of protein using casein as a substrate. The apparent K m and V max values were 0.126 mM and 0.523 mM/min, respectively and the accurate value of k cat was obtained as 3.284 × 10?2 s?1. These special and important characteristics make this serine protease as valuable tool for industrial applications.  相似文献   

13.
Unbranched heterocytous cyanobacteria produce a number of serine peptidases. We have characterized several peptidases in the cell-free extracts of a true-branched N2-fixing cyanobacterium, Westiellopsis ramosa sp. nov. Upon substrate-gel zymography of intact filaments and heterocytes, five peptidase bands were resolved, whereas in vegetative cells, a single band was discernible. No band was detected in \({\text{NO}}_{3}^{ - } /{\text{NH}}_{4}^{ + }\)-grown cultures suggesting that the peptidases were present under diazotrophic conditions with much of them confined to heterocytes. Using salt precipitation and chromatography, a caseinolytic peptidase, called Wrp49, was purified which also demonstrated fibrinolytic activity. In SDS-PAGE, the purified peptidase was resolved into 17 and 27 kDa fragments. The enzyme in its native state exhibited Mr ≈ 49 kDa, and digested gelatin in a substrate gel at a corresponding position. The enzyme showed amidolytic activity on a plasmin specific substrate, D-Val-Leu-Lys p-nitroanilide. Moreover, a trypsin specific substrate, N-benzoyl-DL-Arg p-nitroanilide was hydrolyzed at an apparent Km = 0.195 mM and Vmax = 5 × 10?7 M s?1. The enzyme was stable in a wide pH and temperature range. While Ca2+ stimulated the activity; phenylmethane sulfonyl fluoride, leupeptin, EDTA and chelants were inhibitory. The activity of the EDTA-inactivated enzyme was completely restored upon adding Ca2+, suggesting that both compounds competed with each other in modulating the enzyme activity. The enzyme showed similarities with a Ca2+ stimulated subtilisin-like serine peptidase of Anabaena variabilis ATCC 29413, but also presented several unique features of metallopeptidases, such as the chelant’s response. Moreover, the N-terminal sequence (MTVENLARTGVGPGWR) did not match with any of the known peptidases.  相似文献   

14.
Xylanases (EC 3.2.1.8) are hydrolytic enzymes that have found widespread application in the food, feed, and paper-pulp industries. Streptomyces sp. FA1 xynA was expressed as a secreted protein in Pichia pastoris, and the xylanase was applied to the production of Chinese steamed bread for the first time. The optimal pH and the optimal temperature of XynA were 5.5 and 60 °C, respectively. Using beechwood as substrate, the K m and V max were 2.408 mg mL?1 and 299.3 µmol min?1 mg?1, respectively. Under optimal conditions, a 3.6-L bioreactor produced 1374 U mL?1 of XynA activity at a protein concentration of 6.3 g L?1 after 132 h of fermentation. Use of recombinant XynA led to a greater increase in the specific volume of the CSB than could be achieved using commercial xylanase under optimal conditions. This study provides the basis for the application of the enzyme in the baking industry.  相似文献   

15.

Objective

This study was aimed at cloning and characterizing a novel malic enzyme (ME) gene of Mortierella isabellina M6-22 and identifying its relation with lipid accumulation.

Methods

Mime2 was cloned from strain M6-22. Plasmid pET32aMIME2 was constructed to express ME of MIME2 in Escherichia coli BL21. After purification, the optimal pH and temperature of MIME2, as well as Km and Vmax for NADP+ were determined. The effects of EDTA or metal ions (Mn2+, Mg2+, Co2+, Cu2+, Ca2+, or Zn2+) on the enzymatic activity of MIME2 were evaluated. Besides, plasmid pRHMIME2 was created to express MIME2 in Rhodosporidium kratochvilovae YM25235, and its cell lipid content was measured by the acid-heating method. The optimal pH and temperature of MIME2 are 5.8 and 30 °C, respectively.

Results

The act ivity of MIME2 was significantly increased by Mg2+, Ca2+, or Mn2+ at 0.5 mM but inhibited by Cu2+ or Zn2+ (p?<?0.05). The optimal enzymatic activity of MIME2 is 177.46 U/mg, and the Km and Vmax for NADP+ are 0.703 mM and 156.25 μg/min, respectively. Besides, Mime2 transformation significantly increased the cell lipid content in strain YM25235 (3.15?±?0.24 vs. 2.17?±?0.31 g/L, p?<?0.01).

Conclusions

The novel ME gene Mime2 isolated from strain M6-22 contributes to lipid accumulation in strain YM25235.
  相似文献   

16.
L-asparaginase gene from Bacillus subtilis strain R5 (Asn-R5), comprising 990 nucleotides corresponding to a polypeptide of 329 amino acids, was cloned and expressed in Escherichia coli. Recombinant Asn-R5 was produced in soluble and active form exhibiting a specific activity of 223 μmol min?1 mg?1. The optimal temperature and pH for L-asparaginase activity of Asn-R5 were 35 °C and 9.0, respectively. Asn-R5 displayed a 50% activity with D-asparagine and 2% with L-glutamine compared to 100% with L-asparagine. No activity could be detected when D-glutamine was used as substrate. Half-life of the enzyme was 180 min at 35 °C and 40 min at 50 °C. There was no effect of metal ions and EDTA on the activity indicating that Asn-R5 enzyme activity is not metal ion dependent. The Km and Vmax values were 2.4 mM and 265 μmol min?1 mg?1, respectively. Activation energy for reaction catalyzed by Asn-R5 was 28 kJ mol?1. High L-asparaginase activity and thermostability of recombinant Asn-R5 may be beneficial for industrial production and application.  相似文献   

17.
Flavanone 3β-hydroxylase plays very important role in the biosynthesis of flavonoids. A putative flavanone 3β-hydroxylase gene (Pef3h) from Populus euphratica was cloned and over-expressed in Escherichia coli. Induction performed with 0.1 mM IPTG at 20°C led to localization of PeF3H in the soluble fraction. Recombinant enzyme was purified by Ni-NTA affinity. The optimal activity of PeF3H was revealed at pH 7.6 and 35°C. The purified enzyme was stable over pH range of 7.6–8.8 and had a half-life of 1 h at 50°C. The activity of PeF3H was significantly enhanced in the presence of Fe2+ and Fe3+. The K M and V max for the enzyme using naringenin as substrate were 0.23 mM and 0.069 μmoles mg–1min-1, respectively. The K m and V max for eriodictyol were 0.18 mM and 0.013 μmoles mg–1min–1, respectively. The optimal conditions for naringenin bioconversion in dihydrokaempferol were obtained: OD600 of 3.5 for cell concentration, 0.1 mM IPTG, 5 mM α-ketoglutaric acid and 20°C. Under the optimal conditions, naringenin (0.2 g/L) was transformed into 0.18 g/L dihydrokaempferol within 24 h by the recombinant E. coli with a corresponding molar conversion of 88%. Thus, this study provides a promising flavanone 3β-hydroxylase that may be used in biosynthetic applications.  相似文献   

18.
α-Amino-ε-caprolactam (ACL) racemizing activity was detected in a putative dialkylglycine decarboxylase (EC 4.1.1.64) from Citreicella sp. SE45. The encoding gene of the enzyme was cloned and transformed in Escherichia coli BL21 (DE3). The molecular mass of the enzyme was shown to be 47.4 kDa on SDS–polyacrylamide gel electrophoresis. The enzymatic properties including pH and thermal optimum and stabilities were determined. This enzyme acted on a broad range of amino acid amides, particularly unbranched amino acid amides including l-alanine amide and l-serine amide with a specific activity of 17.5 and 21.6 U/mg, respectively. The K m and V max values for d- and l-ACL were 5.3 and 2.17 mM, and 769 and 558 μmol/min.mg protein, respectively. Moreover, the turn over number (K cat) and catalytic efficiency (K cat/K m ) of purified ACL racemase from Citreicella sp. SE45 using l-ACL as a substrate were 465 S?1 and 214 S?1mM?1, respectively. The new ACL racemase from Citreicella sp. SE45 has a potential to be used as the biocatalytic application.  相似文献   

19.
Optimization of process parameters for phytase production by Enterobacter sp. ACSS led to a 4.6-fold improvement in submerged fermentation, which was enhanced further in fed-batch fermentation. The purified 62 kDa monomeric phytase was optimally active at pH 2.5 and 60 °C and retained activity over a wide range of temperature (40–80 °C) and pH (2.0–6.0) with a half-life of 11.3 min at 80 °C. The kinetic parameters K m, V max, K cat, and K cat/K m of the pure phytase were 0.21 mM, 131.58 nmol mg?1 s?1, 1.64 × 103 s?1, and 7.81 × 106 M?1 s?1, respectively. The enzyme was fairly stable in the presence of pepsin under physiological conditions. It was stimulated by Ca+2, Mg+2 and Mn+2, but inhibited by Zn+2, Cu+2, Fe+2, Pb+2, Ba+2 and surfactants. The enzyme can be applied in dephytinizing animal feeds, and the baking industry.  相似文献   

20.
A new α-glucosidase from Shiraia sp. SUPER-H168 under solid-state fermentation was purified by alcohol precipitation and anion-exchange and by gel filtration chromatography. The optimum pH and temperature of the purified α-glucosidase were 4.5 and 60 °C, respectively, using p-nitrophenyl-α-glucopyranoside (α-pNPG) as a substrate. Ten millimoles of sodium dodecyl sulfate, Fe2+, Cu2+, and Ag+ reduced the enzyme activity to 0.7, 7.6, 26.0, and 6.2 %, respectively, of that of the untreated enzyme. The K m, V max, and k cat/K m of the α-glucosidase were 0.52 mM, 3.76 U mg?1, and 1.3?×?104 L s?1 mol?1, respectively. K m with maltose was 0.62 mM. Transglycosylation activities were observed with maltose and sucrose as substrates, while there was no transglycosylation with trehalose. DNA and its corresponding full-length cDNA were cloned and analyzed. The α-glucosidase coding region consisted of a 2997-bp open reading frame encoding a 998-amino acid protein with a 22-amino acid signal peptide; one 48-bp intron was located. The α-glucosidase was a monomeric protein with a predicted molecular mass of 108.2 kDa and a predicted isoelectric point of 5.08. A neighbor-joining phylogenetic tree demonstrated that Shiraia sp. SUPER-H168 α-glucosidase is an ascomycetes α-glucosidase. This is the first report of α-glucosidase from a filamentous fungus that had good glycoside hydrolysis with maltose and α-pNPG, transglycosylation and conversion activity of maltose into trehalose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号