首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Murinoglobulin, a newly identified mouse plasma protein with trypsin-protein esterase activity (Saito, A. & Sinohara, H. (1985) J. Biol. Chem. 260, 775-781), was also found in rat plasma and purified to apparent homogeneity. The serum level of rat murinoglobulin was 14.1 mg/ml, amounting to 1/3 of the total serum globulin fraction. Rat murinoglobulin was a monomeric glycoprotein (Mr = 210,000) containing 12% carbohydrate. Rat plasma contained two isoforms of murinoglobulin, termed I and II, which showed complete immunological identity on double diffusion analysis using rabbit antiserum raised against isoform I or II. These antisera also showed partial cross-reactivity towards mouse murinoglobulin and rat alpha-1-macroglobulin but not towards rat or human alpha-2-macroglobulin. The chemical compositions, peptide mapping patterns and electrophoretic mobilities of the two isoforms resembled each other but clearly differed from those of rat alpha-1- or alpha-2-macroglobulin. Rat murinoglobulin inhibited the proteolytic activity of trypsin towards casein and remazol brilliant blue hide powder. The inhibition as to the latter substrate was greater than that as to the former. When molar ratios of inhibitor to trypsin were low, murinoglobulin and the two alpha-macroglobulins stimulated the amidolytic activity of trypsin towards a synthetic substrate. At higher ratios, however, murinoglobulin, but not the alpha-macroglobulins, inhibited the same activity. The trypsin-protein esterase activity of murinoglobulin and the two alpha-macroglobulins was impaired by a molar excess of soybean trypsin inhibitor. Murinoglobulin and the two alpha-macroglobulins were inactivated by methylamine with a concomitant unmasking of the thiol group. Murinoglobulin was much more sensitive to soybean trypsin inhibitor and methylamine than the two alpha-macroglobulins.  相似文献   

2.
Contrapsin and two isoforms, F (fast) and S (slow), of alpha-1-antiproteinase (also called alpha-1-proteinase inhibitor) were isolated in an apparently homogeneous state from plasma of inflamed guinea pigs. Contrapsin inactivated trypsin, but did not significantly affect chymotrypsin, pancreatic elastase, or pancreatic kallikrein. On the other hand, both isoforms of alpha-1-antiproteinase inhibited trypsin, chymotrypsin, and elastase, but not plasma or pancreatic kallikrein. The S isoform of alpha-1-antiproteinase was present in barely detectable amounts in healthy animals, but increased markedly when the acute-phase reaction was induced by subcutaneous injection of turpentine. On the other hand, the plasma levels of the F isoform, contrapsin, and alpha-macroglobulin showed moderate (1.5 to 2.3-fold) elevation during the acute-phase reaction. In contrast to the previous findings that rats and rabbits contain two different alpha-macroglobulins, one of which is an acute-phase reactant while the other is not, inflamed guinea pigs contained only one species of alpha-macroglobulin. Murinoglobulin, the most prominent acute-phase negative protein in both mice and rats, showed no significant change in guinea pigs. These results indicate that guinea pig plasma contains four major trypsin inhibitors, i.e., contrapsin, alpha-1-antiproteinase, alpha-macroglobulin, and murinoglobulin, the properties of which are very similar to those of the respective mouse homologues, but that the acute-phase response of these inhibitors differs greatly from that of the homologous proteins in rats or mice.  相似文献   

3.
Guinea pig alpha-macroglobulin was purified to apparent homogeneity by sequential chromatography on Sephacryl S-300, DEAE-cellulose, and hydroxyapatite. A molecular weight of 780,000 was obtained by equilibrium sedimentation. The preparation migrated as a single band of Mr = 180,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Rabbit antiserum raised against the final preparation partially cross-reacted with human and rat alpha-2-macroglobulins but not with rat alpha-1-macroglobulin. Guinea pig alpha-macroglobulin stimulated the amidolytic activity of trypsin towards a small substrate, but inhibited the proteolytic activity of trypsin towards remazol brilliant blue hide powder. When treated with trypsin or methylamine, four thiol groups per molecule were newly generated. The reaction with trypsin proceeded with at least at two different rates: half of the thiol groups were generated in a fast reaction and the remaining half in a slower reaction. On the other hand, such a two-step reaction was not detected in the reaction with methylamine. The methylamine-treated alpha-macroglobulin retained half the capacity to bind trypsin and its mobility in polyacrylamide gel under nondenaturing conditions remained virtually unchanged. These properties are in marked contrast to those reported for human alpha-2-macroglobulin, but resemble those of rat alpha-2- and mouse alpha-macroglobulins. The amidase activity of trypsin bound to guinea pig alpha-macroglobulin was impaired by soybean trypsin inhibitor to a much greater degree than that of trypsin bound to human or rat alpha-2-macroglobulin.  相似文献   

4.
Serum levels of murinoglobulin and alpha-macroglobulin were low in newborn mice but increased during the prepubertal development. The adult levels of the two inhibitors were higher in males than in females in 8 inbred strains tested. Gonadectomy at 2 w of age did not significantly affect the prepubertal rise in the levels not only of the above two inhibitors but of contrapsin and alpha-1-antiprotease. The gonadectomy, however, abolished the sex differences seen in the adult levels of these inhibitors. The levels of murinoglobulin and alpha-macroglobulin reached their minimum at 12 h after inducing inflammation and returned to normal at 24 h. Little change was observed in the levels of contrapsin and alpha-1-antiprotease under the same inflammatory conditions.  相似文献   

5.
The interactions of mouse murinoglobulin and alpha-macroglobulin with several proteinases were investigated by filtration and by assays of amidolytic activity towards synthetic substrates in the presence of proteinaceous enzyme inhibitors as well as assays of the inhibition of proteolytic activity. Mouse alpha-macroglobulin formed complexes with thrombin, clotting factor Xa, plasmin, pancreatic kallikrein, plasma kallikrein, submaxillary gland trypsin-like proteinase, neutrophil elastase, and pancreatic elastase. These complexes lost the proteolytic activities against high-molecular-weight substrates, but protected the active sites of the enzymes from inactivation by their proteinaceous inhibitors. Mouse murinoglobulin showed essentially the same properties except (i) that it did not form a complex with the clotting factor Xa, and (ii) that it did not protect plasma kallikrein, neutrophil elastase or submaxillary proteinase from inactivation by their proteinaceous inhibitors, although it formed complexes with these proteinases. No interaction was detected between Clostridium histolyticum collagenase and murinoglobulin or alpha-macroglobulin. These results indicate (i) that murinoglobulin has a proteinase-binding spectrum similar to that of alpha-macroglobulin, but is weaker in the ability to protect the bound proteinases from inactivation by the proteinaceous inhibitors than alpha-macroglobulin and (ii) that mouse alpha-macroglobulin has essentially the same inhibitory spectrum as the human homologue.  相似文献   

6.
Mouse alpha-macroglobulin and murinoglobulin were labeled with 125I and utilized for plasma clearance studies performed with mice. Desialylated murinoglobulin was rapidly cleared from the circulation with a half-life of about 5 min. On the other hand, desialylated alpha-macroglobulin showed a biphasic curve: about half was cleared at a rate similar to that of the intact molecule while the remaining half had a shorter half-life of about 20 min which was prolonged by a simultaneous injection of a 200-fold excess of unlabeled asialoorosomucoid. Virtually no cross competition was observed between these asialoglobulins and formaldehyde-treated bovine serum albumin or trypsin-bound alpha-macroglobulin. These results suggest that the intravascular elimination of desialylated alpha-macroglobulin and murinoglobulin is independent of the clearance systems responsible for formaldehyde-modified proteins or proteinase-bound alpha-macroglobulins, and that the structure or spatial arrangement, or both, of oligosaccharide units of alpha-macroglobulin is somewhat different from that of murinoglobulin, resulting in a difference of avidity of interaction with the asialoglycoprotein receptor. The desialylated alpha-macroglobulin and murinoglobulin accumulated principally in the liver.  相似文献   

7.
Murinoglobulin, a newly identified mouse plasma protein resembling alpha-macroglobulins [Saito, A. & Sinohara, H. (1985) J. Biol. Chem. 260, 775-781], was also found in guinea pig plasma, and purified to homogeneity. Guinea pig murinoglobulin consisted of a single 180-kDa polypeptide chain containing about 18% carbohydrate. It inhibited the proteolytic activities of trypsin and thermolysin towards Remazol brilliant blue hide powder, but stimulated the amidolytic activities of trypsin and Staphylococcus aureus V8 protease towards small synthetic substrates. Heat treatment of murinoglobulin completely abolished the former activities, but partially retained the latter activities. The ability of guinea pig murinoglobulin to inhibit the proteolysis was much weaker than that of the mouse homologue. On interaction with trypsin, murinoglobulin underwent cleavage of one susceptible bond with concomitant unmasking of one thiol group. Methylamine treatment also released one thiol group per molecule.  相似文献   

8.
9.
Green turtle plasma alpha-macroglobulin and ovomacroglobulin underwent conformational changes when they were treated with proteinases or methylamine. Their conformational changes were studied by HPLC gel chromatography, circular dichroism, and electron microscopy. The Stokes radii of native green turtle alpha-macroglobulin and ovomacroglobulin were estimated to be 84.3 +/- 0.5 A, and 93.0 +/- 0.5 A, respectively, by means of an HPLC experiment. After reaction with methylamine or proteinases, the Stokes radius of alpha-macroglobulin changed to 83.0 +/- 0.5 A or 85.4 +/- 0.5 A, respectively, and that of ovomacroglobulin to 93.0 +/- 0.5 A or 87.1 +/- 0.5 A. The circular dichroic spectra of native alpha-macroglobulin and ovomacroglobulin exhibited a negative band at around 215 nm, indicating the presence of beta-structure. Reaction of the two macroglobulins with methylamine resulted in a slight decrease in the ellipticity and reaction with proteinases led to a slight increase. The electron micrographic images of native alpha-macroglobulin and ovomacroglobulin can be described as deformed rings for the former and rugby balls for the latter. A common characteristic feature of the two molecules was that the central parts of the molecules were only thinly occupied by subunit. After reaction of macroglobulins with proteinases, the void spaces became partially filled and their overall shape more rectangular. Methylamine treatment caused a structural change only in alpha-macroglobulin but not in ovomacroglobulin. The difference in the susceptibility of the macroglobulins to methylamine was taken as an indication of evolutional divergence of the two homologous proteins within the last 300 million years.  相似文献   

10.
Human plasma alpha-1-antiproteinase interacted with porcine trypsin in two different manners. One was a well known interaction, which resulted in inhibition of the proteolytic activity of the trypsin. The other has not been described to date, and resulted in retention of the amidolytic activity of the trypsin towards benzoyl-L-arginine p-nitroanilide in the presence of soybean trypsin inhibitor. The latter, so-called trypsin-protein amidase, activity is essentially the same as that observed with vertebrate alpha-macroglobulin and rodent murinoglobulin under similar conditions. All attempts to separate the two different activities as well as to abolish either activity by means of chemical or physical modifications were unsuccessful. The proteolysis-inhibiting interaction, which was virtually completed within 5 min, was predominant over the amidolysis-retaining interaction, when the inhibitor/trypsin molar ratio was less than 1. On the other hand, the amidolysis-retaining interaction, which proceeded much more slowly, became evident when the molar ratio was greater than 1.  相似文献   

11.
Efforts to characterize the receptor recognition domain of alpha-macroglobulins have primarily focused on human alpha 2-macroglobulin (alpha 2M). In the present work, the structure and function of the alpha-macroglobulin receptor recognition site were investigated by amino acid sequence analysis, plasma clearance, and cell binding studies using several nonhuman alpha-macroglobulins: bovine alpha 2M, rat alpha 1-macroglobulin (alpha 1M), rat alpha 1-inhibitor 3 (alpha 1I3), and proteolytic fragments derived from these proteins. Each alpha-macroglobulin bound to the murine peritoneal macrophage alpha-macroglobulin receptor with comparable affinity (Kd approximately 1 nM). A carboxyl-terminal 20-kDa fragment was isolated from each of these proteins, and this fragment bound to alpha-macroglobulin receptors with Kd values ranging from 10 to 125 nM. The amino acid identity between the homologous carboxyl-terminal 20-kDa fragments of human and bovine alpha 2M was approximately 90%, while the overall sequence homology between all carboxyl-terminal fragments studied was 75%. The interchain disulfide bond present in the human alpha 2M carboxyl-terminal 20-kDa fragment was conserved in bovine alpha 2M and rat alpha 1I3, but not in rat alpha 1M. The clearance of each intact alpha-macroglobulin-proteinase complex was significantly retarded following treatment with cis-dichlorodiammineplatinum(II) (cis-DDP). cis-DDP treatment, however, did not affect receptor recognition of purified carboxyl-terminal 20-kDa fragments of these alpha-macroglobulins. A carboxyl-terminal 40-kDa subunit, which can be isolated from rat alpha 1M, bound to the murine alpha-macroglobulin receptor with a Kd of 5 nM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Murinoglobulins are the single chain members of the α2-macroglobulin family of proteinase inhibitors in the mouse. DNA clones representing the genes coding for four different murinoglobulins were isolated from three independent mouse genomic DNA libraries. Sequence analysis demonstrated that in each gene two exons are coding for the bait region. This is the specific protein sequence in each α-macroglobulin, which is functionally important since it is extremely sensitive to cleavage by different proteinases. The molecular data established the existence of at least four different murinoglobulin genes. Three of these corresponded to the three cDNA clones previously identified. Sequencing of intron-exon boundaries and intron sizing allowed us to construct physical maps of the region from exon 15 to exon 25 (numbered in comparison to mouse α2-macroglobulin) in each murinoglobulin gene. Southern blotting of genomic DNA from five different mouse strains confirmed this analysis and even suggested the possible existence of a fifth murinoglobulin gene. These data indicate that the mouse presents genetic repertoire of the α2-macroglobulin family much more complex than originally anticipated. The bait region exon sequences showed a considerably higher degree of divergence (72 to 88% sequence identity) than that of the flanking exon sequences coding for adjacent, structural domains of the murinoglobulin proteinase inhibitors (91 to 96%). Even more surprising was that adjacent intron sequences are conserved as faithfully as the nonbait region coding exons (90 to 96%). These data demonstrate a unique property of the bait region coding sequences, as they apparently are allowed to mutate considerably. This divergency must then confer divergent proteinase inhibitory properties to the resulting proteins.  相似文献   

13.
Physicochemical studies performed on alpha-2-macroglobulin were correlated with the biological activities of this protein. Equilibrium dialysis of the binding of 65Zn by alpha-2-macroglobulin at pH 7.9 showed heterogeneous binding which could be attributed to two classes of binding sites. The site of greatest affinity for zinc had an apparent stoichiometry (n1 in gatoms/mol of alpha-2-macroglobulin monomer) of 12 and an apparent association constant (K1) of 3.06.10(7). The second binding site had an n2 of 60 and K2 of 1.32.10(5). The trypsin binding activity of alpha-2-macroglobulin did not depend on the presence of zinc in this protein since all but traces of this metal could be removed by EDTA without loss of trypsin binding activity. Saturation of site 1 with zinc did not affect the trypsin binding activity of alpha-2-macroglobulin, but binding of the metal by site 2 progressively decreased the trypsin binding activity by causing an irreversable association of the alpha-2-macroglobulin molecules. Removal of excess zinc from alpha-2-macroglobulin did not restore its trypsin binding activity. Our results also indicate that the high zinc content of alpha-2-macroglobulin (320--770 microgram/g protein) reported in the literature is an artifact and that native alpha-2-macroglobulin contains approximately 150--180 microgram Zn/g protein.  相似文献   

14.
The amino acid sequence of a 90-residue segment of human pregnancy zone protein containing its bait region has been determined. Human alpha 2-macroglobulin, human pregnancy zone protein, and rat alpha 1-macroglobulin, alpha 2-macroglobulin, and alpha 1-inhibitor 3 variants 1 and 2 constitute a group of homologous proteins; but the sequences of their bait regions are not related, and they differ in length (32-53 residues). The alpha-macroglobulin bait region is located equivalently with residues 666-706 in human alpha 2-macroglobulin. In view of the extreme sequence variation of the bait regions, the evolutionary constraints for these regions are likely to differ from those of the remainder of the alpha-macroglobulin structure. The sites of specific limited proteolysis in the bait regions of human pregnancy zone protein and rat alpha 1-macroglobulin, alpha 2-macroglobulin, and alpha 1-inhibitor 3 variants 1 and 2 by a variety of proteinases differing in specificity have been determined and compared with those identified earlier in human alpha 2-macroglobulin. The sites of cleavage generally conform to the substrate specificity of the proteinase in question, but the positions and nature of the P4-P4' sites differ. Most cleavages occur in two relatively small segments spaced by 6-10 residues; and in each case, bait region cleavage leads to alpha-macroglobulin-proteinase complex formation. The rate at which a given proteinase cleaves alpha-macroglobulin bait regions is likely to show great variation. Possible structural features of the widely different bait regions and their role in the mechanism of activation are discussed.  相似文献   

15.
We report the identification of the first representative of the alpha-2-macroglobulin family identified in terrestrial invertebrates. An abundant acidic glycoprotein was isolated from the plasma of the soft tick Ornithodoros moubata. Its molecular mass is about 420 kDa in the native state, whereas in SDS/PAGE it migrates as one band of 190 kDa under nonreducing conditions and a band of 92 kDa when reduced. Chemical deglycosylation reveals that it is composed of two different subunits, designated A and B. The N-terminal amino-acid sequence of subunit A is similar to the N-terminus of invertebrate alpha-2-macroglobulin. Sequence analysis of several internal peptides confirms that the tick protein belongs to the alpha-2-macroglobulin family, and the protein is therefore referred to as tick alpha-macroglobulin (TAM). Functional analyses strengthen this assignment. TAM inhibits trypsin and thermolysin cleavage of the high-molecular-weight substrate azocoll in a manner similar to that of bovine alpha-2-macroglobulin. This effect is abolished by pre-treatment of TAM with methylamine. In the presence of TAM, trypsin is protected against active-site inhibition by soybean trypsin inhibitor. We cloned and sequenced a PCR product containing sequences from both subunits and spanning the N-terminus of subunit B and the putative 'bait region' (a segment of alpha-2-macroglobulin which serves as target for various proteases). This indicates that the two subunits are generated from a precursor polypeptide by post-translational processing.  相似文献   

16.
A mouse alpha-macroglobulin (AMG), a homologue of human alpha 2-macroglobulin (alpha 2 M), has been purified to homogeneity. In contrast to human and acute-phase rat alpha 2 M which contains subunits of about Mr 190 000, the mouse protein contains two major (Mr 163000 and 35000) and one minor (Mr 185000) subunits. Also unlike human alpha 2 M, which can be broken down into about 85000-dalton subunits when reacted with an endopeptidase, the native AMG is cleaved by trypsin into multiple components (Mr 86000, 63000, 61000 and 33000). Two-dimensional peptide map analysis of these various 125I-labeled subunit components reveals that the 185000- and 163000-dalton components are homologous proteins but only the 185000-dalton protein contains the 35000-dalton component. The 163000-dalton protein is cleaved by trypsin into 86000- and 63000-dalton components, and the 86-kDa component in turn can be broken down into 61000- and 33000-dalton fragments. Since the 35000-dalton component is serologically related to AMG but does not share any tryptic peptides with both the 163000- and 33000-dalton components, it is neither a copurified impurity nor a cleavage product of the major (163000-dalton) subunit. AMG, therefore, is composed of covalently linked subunits of Mr 163000 and 35000, and the 185000-dalton protein may be a variant subunit of AMG. Trypsin treatment of the [14C]methylamine-labeled AMG and alpha 2 M also sequentially generate subunit patterns indistinguishable from those of the unlabeled macroglobulins. The methylamine-sensitive site(s) of AMG is localized in the 63000-dalton peptide, which is rather resistant to trypsin digestion and to staining by Coomassie brillant blue. We conclude from this study that the mouse homologue has a subunit composition and primary structure distinctly different from those of human and rat alpha 2 M.  相似文献   

17.
Biochemical and immunochemical properties of human alpha 2-macroglobulin and its analogues from cattle, horse, rabbit, guinea pig, rat, mouse, hen and perch have been investigated. It was found that all analogues have the identical molecular mass and structure, being different in their isoelectric point and carbohydrate composition. It was shown that some antigenic properties of macroglobulins remained constant during evolution, whereas other ones were strictly differentiated at the level of families and species. These data allow to classify macroglobulins as proteins which appeared in vertebrates at early stages of evolution revealing only relatively slight changes during the latter.  相似文献   

18.
Chicken alpha-macroglobulin (alpha M) and ovomacroglobulin were purified by Ni+2 chelate chromatography. These proteins had similar subunit structure as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Chicken alpha M bound 1.0 mol and ovomacroglobulin bound 0.8 mol 125I-trypsin per mol inhibitor, respectively. Ovomacroglobulin cleared rapidly from the circulation of mice, and the clearance was inhibited by asialoorosomucoid, but native chicken alpha M cleared slowly (t 1/2 greater than 1 h). After reaction with trypsin, this alpha-macroglobulin cleared rapidly (t 1/2 = 3 min), and this clearance was inhibited by a 1000-fold molar excess of human alpha 2M-methylamine. Ovomacroglobulin-trypsin did not inhibit the binding of 0.2 nM 125I-labeled human alpha 2M-methylamine to mouse peritoneal macrophages in vitro, but chicken alpha M reacted with trypsin inhibited the binding by 50% at 1.9 nM. A kappa I of 1.1 nM was calculated for the binding of chicken alpha M-trypsin to the mammalian alpha-macroglobulin receptor. This affinity is comparable to that obtained with human and bovine alpha 2M.  相似文献   

19.
Binding of alpha 2-macroglobulin and haptoglobin to Actinomyces pyogenes   总被引:1,自引:0,他引:1  
All 25 cultures of Actinomyces pyogenes tested in the present study bound 125I-labelled human alpha 2-macroglobulin with a mean binding of 65.6%. Thirteen cultures also bound 125I-labelled human haptoglobin with a mean of 51.5%. None interacted with fibrinogen, fibronectin, immunoglobulin G, or albumin. Twenty-eight cultures representing other species of actinomycetaceae did not show any interaction with alpha 2-macroglobulin, haptoglobin, and other plasma proteins tested. The binding of alpha 2-macroglobulin and haptoglobin to A. pyogenes was saturable and could be completely inhibited by the respective unlabelled plasma proteins. The binding of alpha 2-macroglobulin could not be inhibited by unlabelled haptoglobin. On the other hand, alpha 2-macroglobulin blocked the binding of haptoglobin, possibly by steric hindrance. Treatment of the bacteria with trypsin reduced their binding activities for alpha 2-macroglobulin and haptoglobin indicating the protein nature of the binding sites. Exposure to heat (1 h, 80 degrees C) significantly diminished the binding activity for haptoglobin, but not that for alpha 2-macroglobulin. The binding of alpha 2-macroglobulin and haptoglobin could be an important feature in the classification of A. pyogenes among the members of actinomycetaceae.  相似文献   

20.
Clostridiopeptidase B (EC 3.4.22.8) was not inhibited by stoichiometric amounts of lima bean trypsin inhibitor, ovomucoid trypsin inhibitor, Kuntiz bovine trypsin inhibotor, Kunitz soybean trypsin inhibitor or ovoinhibitor. Activity was diminished at relatively high concentrations of the three latter inhibitors. Human plasma alpha 2-macroglobulin inhibited both the amidase and protease activity of the enzyme. Rat and dog plasmas contained high molecular weight inhibitors, presumably macroglobulins as well. Inhibition by this component was greater in rat plasma than in dog plasma, which may be related to the observation that clostridiopeptidase B-induced generation of kinin activity is indirect in the former plasma, but direct in the later. Leupeptin (N-acetyl-L-leucyl-L-leucyl-L-argininal) and antipain ([S)-1-carboxy-2-phenylethyl] carbamoyl-L-arginyl-L-valyl-L-argininal) inhibited clostridiopeptidase B (Ki of 2 . 10(-8) and 3 . 10(-8) M, respectively). They were potent inhibitors of clostridiopeptidase B-induced kinin release in dog plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号