首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
为了探究FAS抗体与放线菌素D(actinomycin D,ActD)诱导肝癌细胞Bel-7402凋亡的作用机制,通过自噬阻断剂3-MA的作用,来探讨自噬与凋亡的关系.利用电子显微镜和流式细胞仪观察细胞自噬及凋亡.结果表明,FAS/ActD在诱导细胞凋亡的同时伴有细胞自噬现象,在3-MA作用下,FAS/ActD所诱导的细胞自噬体减少,而凋亡现象严重.并且通过流式细胞仪分析表明,3-MA明显增高FAS/ActD所诱导的细胞凋亡率. Western印迹分析进一步显示,FAS/ActD能引起caspase-3激活产生断裂,同时刺激LC3和BECN1表达,而3-MA作用后自噬体减少,同时LC3和BECN1表达降低,但是caspase-3断裂带表达明显增加.以上结果提示,FAS/ActD诱导的Bel-7402细胞凋亡的同时伴有细胞自噬,Bel-7402细胞通过自噬逃避FAS/ActD诱导的凋亡.  相似文献   

3.
为了探讨FAS抗体与放线菌素D(actinomycin D,ActD)联合作用诱导人宫颈癌HeLa细胞凋亡的分子机制,通过MTT法检测细胞活力,利用流式细胞仪检测细胞凋亡和细胞周期,从而研究FAS/ActD抑制细胞增殖的作用. 结果表明,FAS/ActD能明显降低HeLa细胞的活力,并且通过G1/G0期阻滞和S期阻滞诱导HeLa细胞凋亡. 此外,Western印迹分析进一步显示,FAS/ActD还能引起Bcl-2蛋白表达降低, Bax蛋白表达增加,Bid蛋白发生断裂激活,导致细胞质中Cyto-c释放的增加,并激活在细胞凋亡的执行过程中起着关键作用的caspase 9和caspase 3. 以上结果提示,FAS抗体与ActD的联合作用可能经线粒体途径引起细胞周期阻滞,从而诱导HeLa细胞凋亡. 该研究为宫颈癌的免疫治疗提供了新的思路.  相似文献   

4.
用PCR法扩增出编码人FAS分子胞外区的cDNA片段,直接克隆到pGEM-T载体上,经DNA序列测定后,再插入到谷胱甘肽转硫酶(GST)融合蛋白表达载体pGEX-KG的EcoRⅠ和SalⅠ位点之间,构成重组质粒pKG-hFAS,将此质粒导入大肠杆菌,经IPTG诱导后获得GST-hFAS重组融合蛋白的表达,用谷胱甘肽偶联的Sepharose4B经亲合层析获得纯化的GST-hFAS蛋白,经凝血酶酶切和二次亲合层析去除GST部分,得到纯化的FAS蛋白.用纯化的FAS抗原免疫家兔制备了抗FAS抗体,经检测发现抗FAS抗体能诱导U937细胞发生细胞凋亡  相似文献   

5.
FAS (TNF receptor superfamily member 6, also known as CD95) plays a major role in T-cell apoptosis and is often dysregulated in CTCL. We searched for structural alterations of the FAS gene with the potential to affect its function. Although several heterozygous FAS promoter single nucleotide polymorphisms (SNPs) were detected, the only homozygous one was the −671 GG SNP present in 24/80 CTCL cases (30%). This SNP maps to an interferon response element activated by STAT-1. EMSA and supershift EMSA showed decreased CTCL nuclear protein/STAT-1 binding to oligonucleotides bearing this SNP. Luciferase reporters showed significantly less interferon-alfa responsive expression by FAS promoter constructs containing this SNP in multiple CTCL lines. Finally, FAS was upregulated by interferon-alfa in wildtype CTCL cells but not those bearing the −671 GG SNP. These findings indicate that many CTCL patients harbor the homozygous FAS promoter −671 GG SNP capable of blunting its response to interferon. This may have implications for CTCL pathogenesis, racial incidence and the response of patients to interferon-alfa therapy. In contrast, functionally significant mutations in FAS coding sequences were detected uncommonly. Among CTCL lines with the potential to serve as models of FAS regulation, FAS-high MyLa had both FAS alleles, FAS-low HH was FAS-hemizygous and FAS-negative SeAx was FAS-null.  相似文献   

6.
Chiang CT  Way TD  Tsai SJ  Lin JK 《FEBS letters》2007,581(30):5735-5742
Fatty acid synthase (FAS) expression is markedly elevated in HER2-overexpressing breast cancer cells. In this study, diosgenin, a plant-derived steroid, was found to be effective in suppressing FAS expression in HER2-overexpressing breast cancer cells. Diosgenin preferentially inhibited proliferation and induced apoptosis in HER2-overexpressing cancer cells. Furthermore, diosgenin inhibited the phosphorylation of Akt and mTOR, and enhanced phosphorylation of JNK. The use of pharmacological inhibitors revealed that the modulation of Akt, mTOR and JNK phosphorylation was required for diosgenin-induced FAS suppression. Finally, we showed that diosgenin could enhance paclitaxel-induced cytotoxicity in HER2-overexpressing cancer cells. These results suggested that diosgenin has the potential to advance as chemopreventive or chemotherapeutic agent for cancers that overexpress HER2.  相似文献   

7.
Tumor Necrosis Factor Receptor Super Family 6 gene (TNFRSF6), also known as FAS, encodes the Fas antigen, a cell surface receptor mediating cell apoptosis, situated on chromosome 10q located near the region of linkage to sporadic Alzheimer’s disease (sAD). FAS levels have been reported elevated in the brain of AD patients. Due to both positional and pathobiological criteria, the association of the FAS antigen with this pathology is of great interest. We have tested two SNPs in the FAS gene in 223 Italian patients with non-familial AD from Southern Italy (Calabria region) and 211 healthy control subjects. No significant differences in allelic and genotypic distributions were found between cases and controls, or late and early-onset AD patients, thus suggesting that these polymorphisms do not represent an AD risk factor in our population.  相似文献   

8.
Peptides derived from proteolytic processing of the amyloid precursor protein (APP) are important for the pathogenesis of Alzheimers disease (AD). In the present study, we found that transgenic mice overexpressing wild-type human APP gene (hAPP/+) displayed a much higher expression of FAS, one of the death receptor subfamily. This FAS overexpression was significantly reduced in the cortex of mice overexpressing both wild-type hAPP gene and wild-type human superoxide dismutase-1 gene (hSOD-1). Moreover hSOD-1 transgenic expression was associated with an increase of Glial fibrillary acidic protein (GFAP) production. This study indicates that SOD-1 overexpression can inhibit FAS expression, which may be beneficial in AD.  相似文献   

9.
The senescent endothelial cells show various phenotypes which can increase the incidence of inflammatory cardiovascular diseases, but the fundamental basis for such phenotypic changes of senescing cells remains to be elucidated. This study was undertaken to find transmembrane receptors that might be highly expressed in senescent endothelial cells and play a key role in cell death signal transduction. Comparison of mRNA expression in young and senescent human umbilical vein endothelial cells, using a cDNA microarray method, provided a list of transmembrane receptors including the FAS receptor (tumor necrosis factor receptor superfamily member 6) whose expression levels were significantly increased by cellular senescence. Additional studies focused on FAS demonstrated that a high expression of FAS receptor in senescent endothelial cells is responsible for the susceptibility to apoptotic cell death, as the siRNA-mediated suppression of FAS expression in senescent cells prevented the cell death, and overexpression of exogenous FAS in young cells increased cell death. We also verified that FAS expression level was closely associated with the activation of caspase-3 and caspase-9 involved in apoptosis. The senescence-induced transmembrane receptors including the FAS receptor may provide novel therapeutic targets to prevent cardiovascular diseases.  相似文献   

10.
The galangal (the rhizome of Alpinia officinarum, Hance) is popular in Asia as a traditional herbal medicine. The present study reports that the galangal extract (GE) can potently inhibit fatty-acid synthase (FAS, E.C.2.3.1.85). The inhibition consists of both reversible inhibition with an IC50 value of 1.73?μg?dried?GE/ml, and biphasic slow-binding inactivation. Subsequently the reversible inhibition and slow-binding inactivation to FAS were further studied. The inhibition of FAS by galangin, quercetin and kaempferol, which are the main flavonoids existing in the galangal, showed that quercetin and kaempferol had potent reversible inhibitory activity, but all three flavonoids had no obvious slow-binding inactivation. Analysis of the kinetic results led to the conclusion that the inhibitory mechanism of GE is totally different from that of some other previously reported inhibitors of FAS, such as cerulenin, EGCG (epigallocatechin gallate) and C75.  相似文献   

11.
Oleuropein (OL) and hydroxytyrosol (HT), the main olive oil polyphenols, possess anti-proliferative effects in vitro. Fatty acid synthase, a key anabolic enzyme of biosynthesis of fatty acids, plays an important role in colon carcinoma development. Our aim was to investigate whether gene expression of FAS, as well as its enzymatic activity, is regulated by HT and OL in two human colon cancer cell lines, as HT-29 and SW620. In addition, we investigated the effects of these polyphenols on growth and apoptosis in these cells. FAS gene expression and activity in treated HT-29 and SW620 cells were evaluated by real-time PCR and radiochemical assay, respectively. Cell growth and apoptosis, after polyphenols treatment, were measured by MTT test and flow cytometry, respectively. The inhibition of proliferation, detected after HT treatment, was mediated by an inhibition of FAS expression and its enzymatic activity in SW620 cells, while the anti-proliferative effect in HT-29 cells seems to be independent from FAS. OL exerted an anti-proliferative effect only on SW620 cells with a mechanism which excluded FAS. Olive oil polyphenols used were able to induce apoptosis in both cell lines studied. The increase of apoptosis in these cells was accompanied by the block of cell cycle in the S phase. This study demonstrates that HT and OL may induce anti-proliferative and pro-apoptotic effects only in certain human colorectal cancer cell types. These effects are FAS mediated only in SW620 cells after treatment with HT.  相似文献   

12.
Apoptosis is a highly regulated and programmed cell breakdown process characterized by numerous changes. It was reported as the major mechanism of anticancer drug-induced cells death. Unfortunately, many of these drugs are non-specific and cause severe side effects. The effects of 5-fluorouracil (5-FU) on the apoptotic events in normal murine thymus were evaluated using an in vivo model. A single dose of 5-FU (150 mg/kg ip) was injected to CF-1 mice. A multiparametric analysis of thymic weight, cellularity, viability, architectural organization, apoptosis, DNA fragmentation, and the expression of several apoptotic proteins was evaluated in 10 days time-course study post-5-FU dosing. Total organ weights, thymocyte counts, and cell viabilities diminished drastically from the second day. The thymus architecture assessed through electron scanning microscopy revealed deep alterations and the lost of cell-cell contact between the first and the third days. DNA fragmentation and apoptotic indexes (May Grünwald Giemsa staining, double fluorescent dyes, and TdT-mediated dUTP nick-end labeling assay) revealed that cell death was maximal on the second day (three times over control). Furthermore, the pro-apoptotic proteins FAS and Bax were strongly up-regulated during the first 2 days. The aforementioned morphological and biochemical changes were also accompanied within the same period by caspase 3 activation. This study revealed that in vivo apoptosis in normal thymus after 5-FU administration is related to FAS, Bax, and Caspase 3 co-expressions under the current experimental conditions, these findings, therefore, contribute to a new insight into the molecular mechanisms involved during 5-FU administration upon the thymus and the possible events committed in the lymphophenia associated with chemotherapy.  相似文献   

13.
FAS–FAS ligand interaction has been implicated in increased enterocyte apoptosis seen in immune-mediated bowel injury. However, scant information exists on the role of FAS in physiological enterocyte turnover. In the present study, the regulation of enterocyte FAS and FAS ligand expression by cytokines and its functional role in human intestinal epithelial cell apoptosis and proliferation were analyzed with two different models: a nontransformed human intestinal epithelial cell line (HIEC) and normal colonic explant cultures. HIEC constitutively expressed FAS, as analyzed by flow cytometry. However, stimulation with agonistic anti-FAS antibody (1–500 ng/ml) did not induce HIEC apoptosis. In contrast, in the presence of tumor necrosis factor α (TNFα) and/or interferon γ (IFNγ), HIEC became highly susceptible to FAS-induced apoptosis. The sensitizing effect to FAS-induced apoptosis was mediated via TNFα- and IFNγ-induced upregulation of FAS expression (maximally 348%). Receptor studies showed that the effect of TNFα on FAS was mediated via the p55 TNF receptor. In colonic organ cultures, IFNγ and TNFα also enhanced colonocyte FAS expression, resulting in a markedly increased apoptotic response to stimulation of this receptor, as shown by in situ terminal deosyuridine triphosphate nick-end staining. Neither FAS ligand expression nor its induction by cytokines was observed in HIEC or colonic explants. Proliferation studies showed that FAS is not implicated in regulating HIEC growth. These findings suggest that, despite the fact that normal human enterocytes express FAS, costimulatory factors, such as TNFα or IFNγ, abundantly secreted under inflammatory conditions, are necessary to sensitize intestinal epithelial cells to FAS-induced apoptosis by upregulating this receptor. J. Cell. Physiol. 181:45–54, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

14.
Human malignant melanoma cell line UACC903 is resistant to apoptosis while chromosome 6-mediated suppressed cell line UACC903(+6) is sensitive. Here, we describe identification of differential molecular pathways underlying this difference. Using our recently developed mitochondria-focused cDNA microarrays, we identified 154 differentially expressed genes including proapoptotic (BAK1 [6p21.3], BCAP31, BNIP1, CASP3, CASP6, FAS, FDX1, FDXR, TNFSF10 and VDAC1) and antiapoptotic (BCL2L1, CLN3 and MCL1) genes. Expression of these pro- and anti-apoptotic genes was higher in UACC903(+6) than in UACC903 before UV treatment and was altered after UV treatment. qRT-PCR and Western blots validated microarray results. Our bioinformatic analysis mapped these genes to differential molecular pathways that predict resistance and sensitivity of UACC903 and UACC903(+6) to apoptosis respectively. The pathways were functionally confirmed by the FAS ligand-induced cell death and by siRNA knockdown of BAK1 protein. These results demonstrated the differential molecular pathways underlying survival and apoptosis of UACC903 and UACC903(+6) cell lines. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Qiuyang Zhang, Jun Wu, and AnhThu Nguyen made equal contributions to this work.  相似文献   

15.
16.
Stabilin-2 was recently shown to mediate a heterophilic interaction with integrin alphaMbeta2 via its FAS1 domain. Here, we demonstrate that stabilin-2 also mediates homophilic cell-cell interactions. L cells expressing stabilin-2 mediate a significant level of cell aggregation, and this aggregation is significantly inhibited by anti-stabilin-2 antibody. Stabilin-2-mediated aggregation is mediated by homophilic interactions and enhanced in the presence of Ca2+ and Mg2+. Interestingly, exogenous addition of FAS1 domains but not EGF-like domains enhances stabilin-2-mediated cell aggregation, suggesting that exogenous FAS1 domains may form polymeric structure with FAS1 domains of stabilin-2. Together, these data show the participation of stabilin-2 in homophilic cell adhesion and role of FAS1 domains.  相似文献   

17.
18.
19.
LNCaP prostate cancer cells are resistant to induction of apoptosis by gamma-irradiation and partially sensitive to TNF-alpha or FAS antibody, irradiation sensitizes cells to apoptosis induced by FAS antibody or TNF-alpha. LNCaP cell clones stably expressing IkappaBalpha super repressor were resistant to apoptosis induced by death ligands in the presence or absence of irradiation. IkappaBalpha super repressor expression also increased clonogenic survival after exposure to TNF-alpha+irradiation, but had no effect on survival after irradiation alone. IkappaBalpha super repressor expression blocked the increase of whole cell and cell surface FAS expression induced by TNF-alpha, but did not effect induction of FAS expression and cell surface FAS expression that resulted from irradiation. In cells expressing IkappaBalpha super repressor there was diminished activation of caspases-8 and -7 and diminished production of proscaspases-8 and -7, usually required for death induction in LNCaP cells. Peptide inhibitors of caspase activation complemented the IkappaBalpha super repressor inhibition of apoptosis, but peptide inhibitors of serine proteases had no effect on LNCaP cells expressing IkappaBalpha super repressor. Moreover, cleavage of a serine protease substrate was induced by treatment of LNCaP cells with TNF-alpha and irradiation. The data suggest that in LNCaP cells NF-kappaB mediates a proapoptotic pathway that leads to activation of proapoptotic serine proteases.  相似文献   

20.
Qiao S  Tuohimaa P 《FEBS letters》2004,577(3):451-454
FAS and FACL3 are enzymes of fatty acid metabolism. In our previous studies, we found that FAS and FACL3 genes were vitamin D3-regulated and involved in the antiproliferative effect of 1alpha,25(OH)2D3 in the human prostate cancer LNCaP cells. Here, we elucidated the mechanism behind the downregulation of FAS expression by vitamin D3. Triacsin C, an inhibitor of FACL3 activity, completely abolished the downregulation of FAS expression by vitamin D3, whereas an inhibitor of FAS activity, cerulenin, had no significant effect on the upregulation of FACL3 expression by vitamin D3 in LNCaP cells. In human prostate cancer PC3 cells, in which FACL3 expression is not regulated by vitamin D3, no regulation of FAS expression was seen. This suggests that the downregulation of FAS expression by vitamin D3 is mediated by vitamin D3 upregulation of FACL3 expression. Myristic acid, one of the substrates preferential for FACL3, enhanced the repression of FAS expression by vitamin D3. The action of myristic acid was abrogated by inhibition of FACL3 activity, suggesting that the enhancement in the downregulation of FAS expression by vitamin D3 is due to the formation of myristoyl-CoA. The data suggest that vitamin D3-repression of FAS mRNA expression is the consequence of feedback inhibition of FAS expression by long chain fatty acyl-CoAs, which are formed by FACL3 during its upregulation by vitamin D3 in human prostate cancer LNCaP cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号