首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The maturation of cytosolic iron-sulfur (Fe/S) proteins in mammalian cells requires components of the mitochondrial iron-sulfur cluster assembly and export machineries. Little is known about the cytosolic components that may facilitate the assembly process. Here, we identified the cytosolic soluble P-loop NTPase termed huNbp35 (also known as Nubp1) as an Fe/S protein, and we defined its role in the maturation of Fe/S proteins in HeLa cells. Depletion of huNbp35 by RNA interference decreased cell growth considerably, indicating its essential function. The deficiency in huNbp35 was associated with an impaired maturation of the cytosolic Fe/S proteins glutamine phosphoribosylpyrophosphate amidotransferase and iron regulatory protein 1 (IRP1), while mitochondrial Fe/S proteins remained intact. Consequently, huNbp35 is specifically involved in the formation of extramitochondrial Fe/S proteins. The impaired maturation of IRP1 upon huNbp35 depletion had profound consequences for cellular iron metabolism, leading to decreased cellular H-ferritin, increased transferrin receptor levels, and higher transferrin uptake. These properties clearly distinguished huNbp35 from its yeast counterpart Nbp35, which is essential for cytosolic-nuclear Fe/S protein assembly but plays no role in iron regulation. huNbp35 formed a complex with its close homologue huCfd1 (also known as Nubp2) in vivo, suggesting the existence of a heteromeric P-loop NTPase complex that is required for both cytosolic Fe/S protein assembly and cellular iron homeostasis.  相似文献   

2.
Biogenesis of iron-sulfur ([Fe-S]) proteins in eukaryotes requires the function of complex proteinaceous machineries in both mitochondria and cytosol. In contrast to the mitochondrial pathway, little is known about [Fe-S] protein assembly in the cytosol. So far, four highly conserved proteins (Cfd1, Nbp35, Nar1 and Cia1) have been identified as members of the cytosolic [Fe-S] protein assembly machinery, but their molecular function is unresolved. Using in vivo and in vitro approaches, we found that the soluble P-loop NTPases Cfd1 and Nbp35 form a complex and bind up to three [4Fe-4S] clusters, one at the N terminus of Nbp35 and one each at a new C-terminal cysteine-rich motif present in both proteins. These labile [Fe-S] clusters can be rapidly transferred and incorporated into target [Fe-S] apoproteins in a Nar1- and Cia1-dependent fashion. Our data suggest that the Cfd1-Nbp35 complex functions as a novel scaffold for [Fe-S] cluster assembly in the eukaryotic cytosol.  相似文献   

3.
P-loop NTPases of the ApbC/Nbp35 family are involved in FeS protein maturation in nearly all organisms and are proposed to function as scaffolds for initial FeS cluster assembly. In yeast and animals, Cfd1 and Nbp35 are homologous P-loop NTPases that form a heterotetrameric complex essential for FeS protein maturation through the cytosolic FeS cluster assembly (CIA) pathway. Cfd1 is conserved in animals, fungi, and several archaeal species, but in many organisms, only Nbp35 is present, raising the question of the unique roles played by Cfd1 and Nbp35. To begin to investigate this issue, we examined Cfd1 and Nbp35 function in budding yeast. About half of each protein was detected in a heterocomplex in logarithmically growing yeast. Nbp35 readily bound 55Fe when fed to cells, whereas 55Fe binding by free Cfd1 could not be detected. Rapid 55Fe binding to and release from Nbp35 was impaired by Cfd1 deficiency. A Cfd1 mutation that caused a defect in heterocomplex stability supported iron binding to Nbp35 but impaired iron release. Our results suggest a model in which Cfd1-Nbp35 interaction increases the lability of assembled FeS on the Nbp35 scaffold for transfer to target apo-FeS proteins.  相似文献   

4.
Iron-sulfur proteins play an essential role in a variety of biologic processes and exist in multiple cellular compartments. The biogenesis of these proteins has been the subject of extensive investigation, and particular focus has been placed on the pathways that assemble iron-sulfur clusters in the different cellular compartments. Iron-only hydrogenase-like protein 1 (IOP1; also known as nuclear prelamin A recognition factor like protein, or NARFL) is a human protein that is homologous to Nar1, a protein in Saccharomyces cerevisiae that, in turn, is an essential component of the cytosolic iron-sulfur protein assembly pathway in yeast. Previous siRNA-induced knockdown studies using mammalian cells point to a similar role for IOP1 in mammals. In the present studies, we pursued this further by knocking out Iop1 in Mus musculus. We find that Iop1 knock-out results in embryonic lethality before embryonic day 10.5. Acute, inducible global knock-out of Iop1 in adult mice results in lethality and significantly diminished activity of cytosolic aconitase, an iron-sulfur protein, in liver extracts. Inducible knock-out of Iop1 in mouse embryonic fibroblasts results in diminished activity of cytosolic but not mitochondrial aconitase and loss of cell viability. Therefore, just as with knock-out of Nar1 in yeast, we find that knock-out of Iop1/Narfl in mice results in lethality and defective cytosolic iron-sulfur cluster assembly. The findings demonstrate an essential role for IOP1 in this pathway.  相似文献   

5.
The assembly of cytosolic and nuclear iron-sulfur (Fe/S) proteins in yeast is dependent on the iron-sulfur cluster assembly and export machineries in mitochondria and three recently identified extramitochondrial proteins, the P-loop NTPases Cfd1 and Nbp35 and the hydrogenase-like Nar1. However, the molecular mechanism of Fe/S protein assembly in the cytosol is far from being understood, and more components are anticipated to take part in this process. Here, we have identified and functionally characterized a novel WD40 repeat protein, designated Cia1, as an essential component required for Fe/S cluster assembly in vivo on cytosolic and nuclear, but not mitochondrial, Fe/S proteins. Surprisingly, Nbp35 and Nar1, themselves Fe/S proteins, could assemble their Fe/S clusters in the absence of Cia1, demonstrating that these components act before Cia1. Consequently, Cia1 is involved in a late step of Fe/S cluster incorporation into target proteins. Coimmunoprecipitation assays demonstrated a specific interaction between Cia1 and Nar1. In contrast to the mostly cytosolic Nar1, Cia1 is preferentially localized to the nucleus, suggesting an additional function of Cia1. Taken together, our results indicate that Cia1 is a new member of the cytosolic Fe/S protein assembly (CIA) machinery participating in a step after Nbp35 and Nar1.  相似文献   

6.
The essential P-loop NTPases Cfd1 and Nbp35 of the cytosolic iron-sulfur (Fe-S) protein assembly machinery perform a scaffold function for Fe-S cluster synthesis. Both proteins contain a nucleotide binding motif of unknown function and a C-terminal motif with four conserved cysteine residues. The latter motif defines the Mrp/Nbp35 subclass of P-loop NTPases and is suspected to be involved in transient Fe-S cluster binding. To elucidate the function of these two motifs, we first created cysteine mutant proteins of Cfd1 and Nbp35 and investigated the consequences of these mutations by genetic, cell biological, biochemical, and spectroscopic approaches. The two central cysteine residues (CPXC) of the C-terminal motif were found to be crucial for cell viability, protein function, coordination of a labile [4Fe-4S] cluster, and Cfd1-Nbp35 hetero-tetramer formation. Surprisingly, the two proximal cysteine residues were dispensable for all these functions, despite their strict evolutionary conservation. Several lines of evidence suggest that the C-terminal CPXC motifs of Cfd1-Nbp35 coordinate a bridging [4Fe-4S] cluster. Upon mutation of the nucleotide binding motifs Fe-S clusters could no longer be assembled on these proteins unless wild-type copies of Cfd1 and Nbp35 were present in trans. This result indicated that Fe-S cluster loading on these scaffold proteins is a nucleotide-dependent step. We propose that the bridging coordination of the C-terminal Fe-S cluster may be ideal for its facile assembly, labile binding, and efficient transfer to target Fe-S apoproteins, a step facilitated by the cytosolic iron-sulfur (Fe-S) protein assembly proteins Nar1 and Cia1 in vivo.  相似文献   

7.
Iron-Sulfur (Fe-S) proteins are involved in many biological functions such as electron transport, photosynthesis, regulation of gene expression and enzymatic activities. Biosynthesis and transfer of Fe-S clusters depend on Fe-S clusters assembly processes such as ISC, SUF, NIF, and CIA systems. Unlike other eukaryotes which possess ISC and CIA systems, amitochondriate Entamoeba histolytica has retained NIF & CIA systems for Fe-S cluster assembly in the cytosol. In the present study, we have elucidated interaction between two proteins of E. histolytica CIA system, Cytosolic Fe-S cluster deficient 1 (Cfd1) protein and Nucleotide binding protein 35 (Nbp35). In-silico analysis showed that structural regions ranging from amino acid residues (P33-K35, G131-V135 and I147-E151) of Nbp35 and (G5-V6, M34-D39 and G46-A52) of Cfd1 are involved in the formation of protein-protein complex. Furthermore, Molecular dynamic (MD) simulations study suggested that hydrophobic forces surpass over hydrophilic forces between Nbp35 and Cfd1 and Van-der-Waal interaction plays crucial role in the formation of stable complex. Both proteins were separately cloned, expressed as recombinant fusion proteins in E. coli and purified to homogeneity by affinity column chromatography. Physical interaction between Nbp35 and Cfd1 proteins was confirmed in vitro by co-purification of recombinant Nbp35 with thrombin digested Cfd1 and in vivo by pull down assay and immunoprecipitation. The insilico, in vitro as well as in vivo results prove a stable interaction between these two proteins, supporting the possibility of its involvement in Fe-S cluster transfer to target apo-proteins through CIA machinery in E. histolytica. Our study indicates that initial synthesis of a Fe-S precursor in mitochondria is not necessary for the formation of Cfd1-Nbp35 complex. Thus, Cfd1 and Nbp35 with the help of cytosolic NifS and NifU proteins can participate in the maturation of non-mitosomal Fe-S proteins without any apparent assistance of mitosomes.  相似文献   

8.
A role for IOP1 in mammalian cytosolic iron-sulfur protein biogenesis   总被引:1,自引:0,他引:1  
The biogenesis of cytosolic iron-sulfur (Fe-S) proteins in mammalian cells is poorly understood. In Saccharomyces cerevisiae, there is a pathway dedicated to cytosolic Fe-S protein maturation that involves several essential proteins. One of these is Nar1, which intriguingly is homologous to iron-only hydrogenases, ancient enzymes that catalyze the formation of hydrogen gas in anaerobic bacteria. There are two orthologues of Nar1 in mammalian cells, iron-only hydrogenase-like protein 1 (IOP1) and IOP2 (also known as nuclear prelamin A recognition factor). We examined IOP1 for a potential role in mammalian cytosolic Fe-S protein biogenesis. We found that knockdown of IOP1 in both HeLa and Hep3B cells decreases the activity of cytosolic aconitase, an Fe-S protein, but not that of mitochondrial aconitase. Knockdown of IOP2, in contrast, had no effect on either. The decrease in aconitase activity upon IOP1 knockdown is rescued by expression of a small interference RNA-resistant version of IOP1. Upon loss of its Fe-S cluster, cytosolic aconitase is known to be converted to iron regulatory protein 1, and consistent with this, we found that IOP1 knockdown increases transferrin receptor 1 mRNA levels and decreases ferritin heavy chain protein levels. IOP1 knockdown also leads to a decrease in activity of xanthine oxidase, a distinct cytosolic Fe-S protein. Taken together, these results provide evidence that IOP1 is involved in mammalian cytosolic Fe-S protein maturation.  相似文献   

9.
Nbp35 and Cfd1 are prototypical members of the MRP/Nbp35 class of iron-sulfur (FeS) cluster scaffolds that function to assemble nascent FeS clusters for transfer to FeS-requiring enzymes. Both proteins contain a conserved NTPase domain that genetic studies have demonstrated is essential for their cluster assembly activity inside the cell. It was recently reported that these proteins possess no or very low nucleotide hydrolysis activity in vitro, and thus the role of the NTPase domain in cluster biogenesis has remained uncertain. We have reexamined the NTPase activity of Nbp35, Cfd1, and their complex. Using in vitro assays and site-directed mutagenesis, we demonstrate that the Nbp35 homodimer and the Nbp35-Cfd1 heterodimer are ATPases, whereas the Cfd1 homodimer exhibited no or very low ATPase activity. We ruled out the possibility that the observed ATP hydrolysis activity might result from a contaminating ATPase by showing that mutation of key active site residues reduced activity to background levels. Finally, we demonstrate that the fluorescent ATP analog 2′/3′-O-(N′-methylanthraniloyl)-ATP (mantATP) binds stoichiometrically to Nbp35 with a KD = 15.6 μm and that an Nbp35 mutant deficient in ATP hydrolysis activity also displays an increased KD for mantATP. Together, our results demonstrate that the cytosolic iron-sulfur cluster assembly scaffold is an ATPase and pave the way for interrogating the role of nucleotide hydrolysis in cluster biogenesis by this large family of cluster scaffolding proteins found across all domains of life.  相似文献   

10.
The biogenesis of iron-sulfur (Fe/S) proteins in eukaryotes is a complex process involving more than 20 components. So far, functional investigations have mainly been performed in Saccharomyces cerevisiae. Here, we have analyzed the role of the human cysteine desulfurase Nfs1 (huNfs1), which serves as a sulfur donor in biogenesis. The protein is located predominantly in mitochondria, but small amounts are present in the cytosol/nucleus. huNfs1 was depleted efficiently in HeLa cells by a small interfering RNA (siRNA) approach, resulting in a drastic growth retardation and striking morphological changes of mitochondria. The activities of both mitochondrial and cytosolic Fe/S proteins were strongly impaired, demonstrating that huNfs1 performs an essential function in Fe/S protein biogenesis in human cells. Expression of murine Nfs1 (muNfs1) in huNfs1-depleted cells restored both growth and Fe/S protein activities to wild-type levels, indicating the specificity of the siRNA depletion approach. No complementation of the growth retardation was observed, when muNfs1 was synthesized without its mitochondrial presequence. This extramitochondrial muNfs1 did not support maintenance of Fe/S protein activities, neither in the cytosol nor in mitochondria. In conclusion, our study shows that the essential huNfs1 is required inside mitochondria for efficient maturation of cellular Fe/S proteins. The results have implications for the regulation of iron homeostasis by cytosolic iron regulatory protein 1.  相似文献   

11.
African trypanosomes encode three monothiol glutaredoxins (1-C-Grx). 1-C-Grx1 occurs exclusively in the mitochondrion, and 1-C-Grx2 and -3 are predicted to be mitochondrial and cytosolic proteins, respectively. All three 1-C-Grx are expressed in both the mammalian bloodstream and the insect procyclic form of Trypanosoma brucei, with the highest levels found in stationary phase and starving parasites. In the rudimentary mitochondrion of bloodstream cells, 1-C-Grx1 reaches concentrations above 200 microm/subunit. Recombinant T. brucei 1-C-Grx1 exists as a noncovalent homodimer, whereas 1-C-Grx2 and 1-C-Grx3 are monomeric proteins. In vitro, dimeric 1-C-Grx1 coordinated an H(2)O(2)-sensitive [2Fe-2S] cluster that required GSH as an additional ligand. Both bloodstream and procyclic trypanosomes were refractory to down-regulation of 1-C-Grx1 expression by RNA interference. In procyclic parasites, the 1-c-grx1 alleles could only be deleted if an ectopic copy of the gene was expressed. A 5-10-fold overexpression of 1-C-Grx1 in both parasite forms did not yield a growth phenotype under optimal culture conditions. However, exposure of these cells to the iron chelator deferoxamine or H(2)O(2), but not to iron or menadione, impaired cell growth. Treatment of wild-type bloodstream parasites with deferoxamine and H(2)O(2) caused a 2-fold down- and up-regulation of 1-C-Grx1, respectively. The results point to an essential role of the mitochondrial 1-C-Grx1 in the iron metabolism of these parasites.  相似文献   

12.
The ABC protein ABCE1, formerly named RNase L inhibitor RLI1, is one of the most conserved proteins in evolution and is expressed in all organisms except eubacteria. Because of its fundamental role in translation initiation and/or ribosome biosynthesis, ABCE1 is essential for life. Its molecular mechanism has, however, not been elucidated. In addition to two ABC ATPase domains, ABCE1 contains a unique N-terminal region with eight conserved cysteines, predicted to coordinate iron-sulfur clusters. Here we present detailed information on the type and on the structural organization of the Fe-S clusters in ABCE1. Based on biophysical, biochemical, and yeast genetic analyses, ABCE1 harbors two essential diamagnetic [4Fe-4S](2+) clusters with different electronic environments, one ferredoxin-like (CPX(n)CX(2)CX(2)C; Cys at positions 4-7) and one unique ABCE1-type cluster (CXPX(2)CX(3)CX(n)CP; Cys at positions 1, 2, 3, and 8). Strikingly, only seven of the eight conserved cysteines coordinating the Fe-S clusters are essential for cell viability. Mutagenesis of the cysteine at position 6 yielded a functional ABCE1 with the ferredoxin-like Fe-S cluster in a paramagnetic [3Fe-4S](+) state. Notably, a lethal mutation of the cysteine at position 4 can be rescued by ligand swapping with an adjacent, extra cysteine conserved among all eukaryotes.  相似文献   

13.
Chen  Dong-hong  Huang  Yong  Ruan  Ying  Shen  Wen-Hui 《Planta》2016,243(4):825-846
Planta - The origin and evolution of plant PRC1 core components. Polycomb repressive complex1 (PRC1) plays critical roles in epigenetic silencing of homeotic genes and determination of cell fate....  相似文献   

14.
Mitochondria perform a central function in the biogenesis of cellular iron-sulphur (Fe/S) proteins. It is unknown to date why this biosynthetic pathway is indispensable for life, the more so as no essential mitochondrial Fe/S proteins are known. Here, we show that the soluble ATP-binding cassette (ABC) protein Rli1p carries N-terminal Fe/S clusters that require the mitochondrial and cytosolic Fe/S protein biogenesis machineries for assembly. Mutations in critical cysteine residues of Rli1p abolish association with Fe/S clusters and lead to loss of cell viability. Hence, the essential character of Fe/S clusters in Rli1p explains the indispensable character of mitochondria in eukaryotes. We further report that Rli1p is associated with ribosomes and with Hcr1p, a protein involved in rRNA processing and translation initiation. Depletion of Rli1p causes a nuclear export defect of the small and large ribosomal subunits and subsequently a translational arrest. Thus, ribosome biogenesis and function are intimately linked to the crucial role of mitochondria in the maturation of the essential Fe/S protein Rli1p.  相似文献   

15.
16.
Knockout mice lacking steroidogenic factor 1 (SF-1, officially designated Nr5a1) have a complex phenotype that includes adrenal and gonadal agenesis, impaired expression of pituitary gonadotropins, and structural abnormalities of the ventromedial hypothalamic nucleus. To explore further how SF-1 regulates endocrine function, we used bacterial artificial chromosome transgenesis to develop a lineage marker for SF-1-expressing cells. A genomic fragment containing 50 kb of the mouse Nr5a1 gene was used to target enhanced green fluorescent protein (eGFP) in transgenic mice. These sequences directed eGFP to multiple cell lineages that express SF-1, including steroidogenic cells of the adrenal cortex, testes, and ovaries, neurons of the ventromedial hypothalamic nucleus, and reticuloendothelial cells of the spleen. Despite the proven role of SF-1 in gonadotrope function, eGFP was not expressed in the anterior pituitary. These experiments show that 50 kb of the mouse Nr5a1 gene can target transgenic expression to multiple cell lineages that normally express SF-1. The SF-1/eGFP transgenic mice will facilitate approaches such as fluorescence-activated cell sorting of eGFP-positive cells and DNA microarray analyses to expand our understanding of the multiple actions of SF-1 in endocrine development and function.  相似文献   

17.
Spindle pole bodies (SPBs), like nuclear pore complexes, are embedded in the nuclear envelope (NE) at sites of fusion of the inner and outer nuclear membranes. A network of interacting proteins is required to insert a cytoplasmic SPB precursor into the NE. A central player of this network is Nbp1 that interacts with the conserved integral membrane protein Ndc1. Here, we establish that Nbp1 is a monotopic membrane protein that is essential for SPB insertion at the inner face of the NE. In vitro and in vivo studies identified an N-terminal amphipathic α-helix of Nbp1 as a membrane-binding element, with crucial functions in SPB duplication. The karyopherin Kap123 binds to a nuclear localization sequence next to this amphipathic α-helix and prevents unspecific tethering of Nbp1 to membranes. After transport into the nucleus, Nbp1 binds to the inner nuclear membrane. These data define the targeting pathway of a SPB component and suggest that the amphipathic α-helix of Nbp1 is important for SPB insertion into the NE from within the nucleus.  相似文献   

18.
An iron-sulfur protein has been purified from beef heart ubiquinol-cytochrome c oxidoreductase (Complex III) of the mitochondrial respiratory chain by phenyl-Sepharose column chromatography and Sephacryl S-200 gel chromatography. Depletion of most of the endogenous phospholipids in the complex was a prerequisite to the dissociation of the protein from the complex in the former chromatography. The iron-sulfur protein was nearly homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and contained 76 ng atoms of nonheme iron and 66 nmol of acid-labile sulfide/mg of protein. When this preparation was incubated with an iron-sulfur protein-depleted complex in the presence of soybean phospholipids, the enzymic activity was restored up to 90% of that of the parent Complex III, whereas the recovery of the activity was marginal in the absence of the phospholipids. Thus it is clear that the iron-sulfur protein is integrated into the complex with the aid of phospholipids.  相似文献   

19.
Enteric neural crest-derived cells (ENCCs) migrate along the intestine to form a highly organized network of ganglia that comprises the enteric nervous system (ENS). The signals driving the migration and patterning of these cells are largely unknown. Examining the spatiotemporal development of the intestinal neurovasculature in avian embryos, we find endothelial cells (ECs) present in the gut prior to the arrival of migrating ENCCs. These ECs are patterned in concentric rings that are predictive of the positioning of later arriving crest-derived cells, leading us to hypothesize that blood vessels may serve as a substrate to guide ENCC migration. Immunohistochemistry at multiple stages during ENS development reveals that ENCCs are positioned adjacent to vessels as they colonize the gut. A similar close anatomic relationship between vessels and enteric neurons was observed in zebrafish larvae. When EC development is inhibited in cultured avian intestine, ENCC migration is arrested and distal aganglionosis results, suggesting that ENCCs require the presence of vessels to colonize the gut. Neural tube and avian midgut were explanted onto a variety of substrates, including components of the extracellular matrix and various cell types, such as fibroblasts, smooth muscle cells, and endothelial cells. We find that crest-derived cells from both the neural tube and the midgut migrate avidly onto cultured endothelial cells. This EC-induced migration is inhibited by the presence of CSAT antibody, which blocks binding to β1 integrins expressed on the surface of crest-derived cells. These results demonstrate that ECs provide a substrate for the migration of ENCCs via an interaction between β1 integrins on the ENCC surface and extracellular matrix proteins expressed by the intestinal vasculature. These interactions may play an important role in guiding migration and patterning in the developing ENS.  相似文献   

20.
The destruction of the Rieske iron-sulfur cluster ([2Fe-2S]) in the bc(1) complex by hematoporphyrin-promoted photoinactivation resulted in the complex becoming proton-permeable. To study further the role of this [2Fe-2S] cluster in proton translocation of the bc(1) complex, Rhodobacter sphaeroides mutants expressing His-tagged cytochrome bc(1) complexes with mutations at the histidine ligands of the [2Fe-2S] cluster were generated and characterized. These mutants lacked the [2Fe-2S] cluster and possessed no bc(1) activity. When the mutant complex was co-inlaid in phospholipid vesicles with intact bovine mitochondrial bc(1) complex or cytochrome c oxidase, the proton ejection, normally observed in intact reductase or oxidase vesicles during the oxidation of their corresponding substrates, disappeared. This indicated the creation of a proton-leaking channel in the mutant complex, whose [2Fe-2S] cluster was lacking. Insertion of the bc(1) complex lacking the head domain of the Rieske iron-sulfur protein, removed by thermolysin digestion, into PL vesicles together with mitochondrial bc(1) complex also rendered the vesicles proton-permeable. Addition of the excess purified head domain of the Rieske iron-sulfur protein partially restored the proton-pumping activity. These results indicated that elimination of the [2Fe-2S] cluster in mutant bc(1) complexes opened up an otherwise closed proton channel within the bc(1) complex. It was speculated that in the normal catalytic cycle of the bc(1) complex, the [2Fe-2S] cluster may function as a proton-exiting gate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号